Doctor of Philosophy in Biomedical Engineering (PhD)

Quick Facts

Degree
Doctor of Philosophy
Subject
Engineering
Mode of delivery
On campus
Registration options
Full-time
Specialization
Biomedical Engineering
Program Components
Dissertation
Faculty
Faculty of Applied Science
 

Overview

Biomedical Engineers apply their knowledge in engineering, biology, and medicine to healthcare and medical device industries. Biomedical Engineering is a distinct field that encompasses engineering disciplines, biology, life sciences, medicine, clinical applications, and the improvement of human health. Since 2006, our PhD program has trained students in the fundamentals of Biomedical Engineering, providing extensive research experience in biomechanics, biomaterials, biochemical processing, cellular engineering, imaging, medical devices, micro-electro-mechanical implantable systems, and physiological modeling, simulation, monitoring, and control, as well as medical robotics. Graduates continue on to PhD programs as well as research and development positions in industry and other institutions. The research supervisor's department will determine the student's home department (Electrical & Computer, Chemical & Biological, Materials, Mechanical Engineering).

What makes the program unique?

The Biomedical Engineering Program at UBC is a collaborative undertaking of the following four departments: Electrical Engineering, Mechanical Engineering, Chemical and Biological Engineering, Materials Engineering. This unique interdisciplinary structure provides students with unparalleled access to engineering experts across varied Biomedical Engineering research areas at UBC. It emphasizes a balance of biomedical engineering and life science study with a focus on clinical and industrial application. Our graduates have gone on to become industry leaders, especially in the medical device industry, and provide a network of professionals within the community.

Biomedical Engineering at UBC is the only program in Canada to offer the Engineers in Scrubs (EiS) training program. The EiS program began as an NSERC-funded Collaborative Research and Training Experience (CREATE) program designed to foster innovation in medical technology by training biomedical engineers in clinical environments. Students receive a significant portion of their training in hospital settings, and the program focuses on the medical technology innovation process. This program complements the research training of MASc and PhD students and allows them to work closely with medical professionals in identifying clinical problems and developing a solution.

 

Meet a UBC representative

Engineering Graduate School Fair

McGill University (Trottier Building, 2nd Floor Lobby)
Date: Monday, 25 September 2017
Time: 15:00 to 18:00

Engineering Graduate School Fair

Queen's University, Agnes Etherington Art Centre Atrium, 36 University Avenue
Date: Tuesday, 26 September 2017
Time: 15:00 to 18:00

Engineering Graduate School Fair

McMaster University, University Club, 1280 Main Street, Hamilton Ontario L8S 4K1
Date: Wednesday, 27 September 2017
Time: 16:30 to 19:00

Engineering Graduate School Fair

University of Waterloo, Engineering 5, Sedra Student Design Centre
Date: Thursday, 28 September 2017
Time: 16:30 to 19:00

Engineering Graduate School Fair

University of Toronto, Stone Lobby, Medical Sciences Building, 1 King’s College Cir, Toronto, ON M5S 1A8
Date: Monday, 02 October 2017
Time: 15:00 to 18:00

Engineering Graduate School Fair

University of Alberta, Engineering Teaching and Learning Complex Solarium
Date: Tuesday, 03 October 2017
Time: 16:00 to 19:00

Research Information

Research Highlights

Recent research highlights include:
Overdoes Detection Device
Surgical Screw Cover
Magnetic Drug Implant
Parkinson’s App
Painless and Inexpensive Microneedle System
Non-Invasive Migraine Monitoring Technique

Research Focus

UBC Biomedical Engineering researchers work in a wide range of areas. Our main research clusters (RC) include: Imaging, Modeling, Simulation, and Guided Interventions; BIOMEMs and Bio-Optics; Musculoskeletal Biomechanics, Injury, Disease, and Restorative Treatments; Rehabilitative and Assistive Technologies and Human-Environment Interactions; and Physiological Modeling and Control.

Requirements

TOEFL (ibT) Overall Score Requirement

93
22
21
22
21

IELTS Overall Score Requirement

6.5
6.0
6.0
6.0
6.0

Language Requirements (Details)

English minimum requirements are determined by the research supervisor's home department.

Supervisor commitment required prior to application?

No

Prior degree requirements

Applicants to the BME program should normally hold a research master's degree in engineering or a closely-related degree with significant technical, analytical and mathematical components (e.g., physics, biophysics, chemistry, computer science). Students with degrees in other fields (e.g., life sciences, kinesiology, physical therapy) may be considered for the program if they have adequate technical preparation. We do not have direct entry to the PhD program for applicants without a research master's degree. Applicants without a master's degree interested in pursuing a PhD should apply to the Master of Applied Science.

Funding Sources

The majority of PhD students are offered research assistantships (RAs) by faculty members. RAs are funded by research grants for specific projects which almost always constitute thesis projects. Although you will automatically be considered for an RA when submitting your online application, to successfully secure an RA appointment you are encouraged to make contact with a research supervisor. The number of RA’s offered will vary depending on lab and research space as well as available funding.

Career Outcomes

8 students graduated between 2005 and 2013. Of these, career information was obtained for 7 alumni (based on research conducted between Feb-May 2016):

Sample Employers in Higher Education
British Columbia Institute of Technology
Mahidol University
Sample Employers Outside Higher Education
Cook Biotech Inc.
Response Biomedical Corp
AR Medical Technologies
MEA Forensic Engineers and Scientists
Sample Job Titles Outside Higher Education
Research Engineer
Manager, Product Development
Chief Operating Officer
CTO
Biomechanical Engineer
PhD Career Outcome Survey
You may view the full report on career outcomes of UBC PhD graduates on outcomes.grad.ubc.ca.
Disclaimer
These data represent historical employment information and do not guarantee future employment prospects for graduates of this program. They are for informational purposes only. Data were collected through either alumni surveys or internet research.
Career Options

The PhD program in Biomedical Engineering is designed to prepare students for employment in the public or private sector, or to pursue further studies. Graduates find employment at academic institutions and in high level research and development positions in industry and other institutions. Recent graduates have gone on to work at BCIT, Phillips, and Precision Nanosystems. A burgeoning field, ample opportunities exist in the medical instrument industry, pharmaceutical/biochemical industry, hospitals, medical research facilities and educational institutions, and regulatory bodies, governments, and industry associations.

Tuition / Program Costs

FeesCanadian Citizen / Permanent Resident / Refugee / DiplomatInternational
Application Fee$102.00$165.00
Tuition *
Installments per year33
Tuition per installment$1,600.60$2,811.98
Tuition per year$4,801.80$8,435.94
Int. Tuition Award (ITA) per year (if eligible) $3,200.00 (-)
Other Fees and Costs
Student Fees (yearly)$923.38 (approx.)
Costs of living (yearly)starting at $16,884.10 (check cost calculator)
* Regular, full-time tuition. For on-leave, extension, continuing or part time (if applicable) fees see UBC Calendar.
All fees for the year are subject to adjustment and UBC reserves the right to change any fees without notice at any time, including tuition and student fees. In case of a discrepancy between this webpage and the UBC Calendar, the UBC Calendar entry will be held to be correct.

Statistical Data

Enrolment Data

 20162015201420132012
Applications3433324834
Offers379127
New registrations26575
Total enrolment3836333226

Completion Rates & Times

Based on 5 graduations between 2012 - 2015 the minimum time to completion is 3.33 years and the maximum time is 6.66 years with an average of 5.13 years of study. All calculations exclude leave times.
Disclaimer
Admissions data refer to all UBC Vancouver applications, offers, new registrants for each year, May to April [data updated: 12 July 2017]. Enrolment data are based on March 1 snapshots. Program completion data are only provided for datasets comprised of more than 4 individuals. Rates and times of completion depend on a number of variables (e.g. curriculum requirements, student funding), some of which may have changed in recent years for some programs [data updated: 8 April 2016].

Upcoming Doctoral Exams

Friday, 22 September 2017 - 12:30pm - Room 200

Navid Shirzad
Upper-body Motion Coordination after Stroke: Insights from Kinematic and Muscle Synergies

Research Supervisors

This list shows faculty members with full supervisory privileges who are affiliated with this program. It is not a comprehensive list of all potential supervisors as faculty from other programs or faculty members without full supervisory privileges can request approvals to supervise graduate students in this program.

  • Abolmaesumi, Purang (Biomedical Engineering with emphasis on computer-assisted surgery, image-guided therapy and medical image analysis, prostate cancer)
  • Abugharbieh, Rafeef (Medical image computing)
  • Anasavarapu, Srikantha (Dynamics of multiscale materials, structures and devices, Applied Mechanics, Micromechanics)
  • Baldwin, Susan (Bioprocess engineering, bioremediation, biomedical reaction modelling)
  • Cheung, Karen (Biotechnology, MEMS and BioMEMS, Microtechnology, Lab-on-a-Chip, Microfluidics, neural implants, biomedical engineering, Biomedical microsystems for diagnostic and therapeutic applications, dielectric spectroscopy for flow cytometry, implantable polymer-based microelectrode arrays, integrated cell culture systems)
  • Chiao, Mu (MEMS, Micro Sensors, Micro Actuators, BioMEMS, Nanotechnology, Bioengineering, Electronic Packaging, Nanoscience, Energy sources for micro-electro-mechanical systems)
  • Chrostowski, Lukas (semiconductor lasers, optics, Vertical Cavity Lasers, silicon photonis, photonics, optoelectronics, nano-photonics, biomedical photonics, Semiconductor lasers, optical communications, high-speed laser modulation, VCSELs, photonic integrated circuits (PICs), biophotonics)
  • Cripton, Peter (Biomechanics, Injury, Spinal Cord Injury, Hip Fracture, Spine, Helmet, Skull Fracture, Bone Fracture, Head Impact, Neurotrauma, Orthopaedic Biomechanics, Injury Biomechanics, Neurotrauma (Spinal Cord and Brain Injury), Biomechanics of Hip Fracture, Injury Prevention)
  • Croft, Elizabeth (Robotics, human-robot interaction, mechatronics)
  • Dumont, Guy A (biomedical engineering; automatic drug delivery; mobile health; global health; anesthesia; physiological monitoring;, Adaptive control, predictive control, control of distributed parameters systems, advanced process control, applications of wavelet analysis, biomedical applications of control, pulp and paper process control)
  • Fels, S Sidney (computers and art; multimedia; computer music, Human computer interaction, human 3D biomechanical modeling, speech synthesis, medical applications of modeling, computer vision, interactive arts and music)
  • Feng, James Jingtao (Complex fluids, Biophysics, Mathematical biology)
  • Fernlund, Goran (Polymer matrix composites, Biomaterials, Adhesive bonding)
  • Gopaluni, Bhushan (Modelling and experiment design, identification for control)
  • Grecov, Dana (Rheology, Rheometry, Non-Newtonian Fluid Mechanics, Computational Fluid Mechanics, Liquid Crystals, Biolubricants, Lubricants, Journal Bearings, Multi-Phase Flow, Synovial Joints, Synovial Fluid, Arthrithis, Liquid crystals and nanomaterials, Biofluid Mechanics)
  • Guy, Pierre (hip fracture prevention, treatment and post injury function; BC Hip fracture Redesign; Laboratory Hip Fracture Mechanics; Proximal Humerus Fracture Care RCT)
  • Hansen, Carl (Single-Cell Analysis, Molecular Diagnostics, genomics)
  • Hatzikiriakos, Savvas (Polymer melt and suspension rheology, food rheology, polymer melt processing, superhydrophobicity, surface science, winter sports expert, ski/skate performance and snow/ice friction. )
  • Haynes, Charles (Protein purification, recombinant proteins, molecular thermodynamics, biocompatible polymers)
  • Hodgson, Antony (Bioengineering, Biomechanics, Medical or Surgical Robotics, Medical Engineering, Electoral Reform, Single Transferable Vote, STV, Citizens’ Assembly, Fair Voting )
  • Ivanov, Andre (microelectronics; integrated circuits, computer chip design, smart grid, engineering curriculum, Computer and Software Systems, Emerging Micro/Nano Technologies)
  • Kastrup, Christian (drug delivery, coagulation, biomaterials, atherosclerosis, in-vivo imaging, microfluidics )
  • Ko, Frank (Textile Structural Composites)
  • Kwok, K Ezra (Modelling and control of of chemical and biomedical systems)
  • Ma, Hongshen (Microfluidics; Instrumentation; Cell Sorting; Cell Biomechanics; Circulating Tumor Cells; Malaria and Red Blood Cell Deformability; Single Cell Technologies; Cell Migration and Chemotaxis)

Pages

Recent Doctoral Citations

  • Dr. Quan Guo
    "Dr. Guo developed a novel microfluidic chip to process human blood and sort individual red and white blood cells based on their mechanical deformability. This technique has not only improved the diagnostic sensitivity of malaria, humanity's most devastating infectious disease, but also enabled the sorting of white blood cells based on their phenotypes." (May 2017)
  • Dr. Darek Joseph Sikorski
    "Dr. Sikorski developed small volume methods to grow and analyze single mammalian cells. These studies assist us in understanding how single cell differences affect populations of cells." (May 2017)
  • Dr. Tom Brosch
    "Dr. Brosch developed artificial intelligence models to automatically analyze medical images. His methods found patterns in the brain images of multiple sclerosis patients that can help monitor their disease. His work will help researchers understand multiple sclerosis imaging features and evaluate new treatments more efficiently and accurately." (November 2016)
  • Dr. Eric Ouellet
    "Dr. Ouellet developed a powerful technology that allows scientists to rapidly discover new drugs called aptamers, which are made from short sequences of genetic material. He found that, by applying this technology, new treatments for macular degeneration could be identified. This is now being studied by researchers at UBC's Centre for Blood Research." (November 2015)
  • Dr. Sahba Talebi Fard
    "Dr. Talebi Fard developed optical devices and sensors for medical, clinical and environmental safety applications. This research is a major advancement towards development of a sensing system on a chip. This system can provide low cost, accurate, and easily accessible diagnosis and monitoring, to both healthcare providers and patients at home." (May 2015)
 
 

Departments/Programs may update graduate degree program details through the Faculty & Staff portal. To update the application inquiries contact details please use this form.