Mattia Bacca

Assistant Professor

Research Interests

Adhesion and fracture
Biophysics
Soft materials
Solid Mechanics

Relevant Degree Programs

Affiliations to Research Centres, Institutes & Clusters

 
 

Research Methodology

Analytical and numerical models
Finite element analysis (FEA)

Recruitment

Master's students
Doctoral students
Any time / year round

Adhesion, fracture, soft materials.

I am open to hosting Visiting International Research Students (non-degree, up to 12 months).

Complete these steps before you reach out to a faculty member!

Check requirements
  • Familiarize yourself with program requirements. You want to learn as much as possible from the information available to you before you reach out to a faculty member. Be sure to visit the graduate degree program listing and program-specific websites.
  • Check whether the program requires you to seek commitment from a supervisor prior to submitting an application. For some programs this is an essential step while others match successful applicants with faculty members within the first year of study. This is either indicated in the program profile under "Admission Information & Requirements" - "Prepare Application" - "Supervision" or on the program website.
Focus your search
  • Identify specific faculty members who are conducting research in your specific area of interest.
  • Establish that your research interests align with the faculty member’s research interests.
    • Read up on the faculty members in the program and the research being conducted in the department.
    • Familiarize yourself with their work, read their recent publications and past theses/dissertations that they supervised. Be certain that their research is indeed what you are hoping to study.
Make a good impression
  • Compose an error-free and grammatically correct email addressed to your specifically targeted faculty member, and remember to use their correct titles.
    • Do not send non-specific, mass emails to everyone in the department hoping for a match.
    • Address the faculty members by name. Your contact should be genuine rather than generic.
  • Include a brief outline of your academic background, why you are interested in working with the faculty member, and what experience you could bring to the department. The supervision enquiry form guides you with targeted questions. Ensure to craft compelling answers to these questions.
  • Highlight your achievements and why you are a top student. Faculty members receive dozens of requests from prospective students and you may have less than 30 seconds to pique someone’s interest.
  • Demonstrate that you are familiar with their research:
    • Convey the specific ways you are a good fit for the program.
    • Convey the specific ways the program/lab/faculty member is a good fit for the research you are interested in/already conducting.
  • Be enthusiastic, but don’t overdo it.
Attend an information session

G+PS regularly provides virtual sessions that focus on admission requirements and procedures and tips how to improve your application.

 

Graduate Student Supervision

Master's Student Supervision (2010 - 2021)
Theoretical limits in detachment of fibrillar dry adhesives under geometrical confinement (2021)

Fibrillar dry adhesives are state-of-the-art solutions for controllable and reversible attachments, inspired by nature from animals like the gecko. They depend on short-ranged intermolecular bonds, necessitating discrete attachment terminals with low elastic modulus in order to conform to the adhered material's surface roughness. At the same time, high stiffness grants resistance against interfacial crack growth and detachment under external loading. Nature provides us with a solution to this contentious requirement in the form of bi-material composite adhesives consisting of a soft tip confined by a much stiffer backing, significantly improving the adhesive performance. However, different detachment mechanisms introduced by this design and the adhesive strength corresponding to them have not been thoroughly investigated. We study the adhesive strength of an axisymmetric bi-material with a soft tip adhered to a rigid substrate subjected to normal loading, using linear elastic fracture mechanics. Two major detachment mechanisms are noticed: Crack propagation from the perimeter of the interface and from its center. Geometry and incompressibility of the adhesive layer determine the predominant detachment mode. For a geometrically confined tip under certain conditions, the maximum adhesive strength becomes independent of the crack size due to center crack stable propagation. This maximum adhesive strength is ultimately presented in the form of a power-law equation evidencing an increase in adhesive strength for thinner tips. Finally, we found a good agreement between our results and experiments.

View record

 
 

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.

 
 

Planning to do a research degree? Use our expert search to find a potential supervisor!