Doctor of Philosophy in Physics (PhD)


The Department of Physics and Astronomy is a broad-based department with a wide range of research interests covering many key topics in contemporary physics, astronomy, and applied physics. We are a vibrant community that engages in a wide range of research directions, from probing the origin of the universe to exploring emergent phenomena in complex systems, that provide deep insights into the nature of the universe and practical solutions that will help define the world of tomorrow. Departmental research activities are supported by several computing and experimental facilities, and excellent electronics and machine shops.

Our graduate programs include approximately 200 graduate students, working on experiments and theory in research fields that include: Applied Physics, Astronomy/Astrophysics, Atomic/Molecular/Optics, Biophysics, Condensed Matter, Cosmology, Gravity, Medical Physics, Nuclear Physics, Particle Physics, and String Theory.

What makes the program unique?

The Department of Physics & Astronomy at UBC is noted for the excellence of its research and its high academic standards and integrity. It is one of the largest and most diverse physics and astronomy departments in Canada. We are constantly rated as one of the top Physics & Astronomy programs in the world. Much of the Department's research is enhanced by local facilities such as the TRIUMF National Laboratory, the Advanced Materials and Process Engineering Laboratory (AMPEL), and the BC Cancer Agency, UBC, and associated teaching hospitals, in addition to many specialized research laboratories housed within the Department. There is a great deal of collaboration and overlap of interests among the various groups.

Each year, our faculty bring over $20 million in research grants. This enables us to maintain world-class research laboratories and computational facilities, attract distinguished post-doctorate researchers, and support highly skilled engineers and technicians whose expertise is critical to our research.


Program Enquiries

Still have questions after reviewing this page thoroughly?
Contact the program

Meet a UBC representative

UBC Graduate School Information Session

Date: Tuesday, 14 July 2020
Time: 11:00 to 12:00

Join Kelli Kadokawa and Shane Moore from the Graduate and Postdoctoral Office for this online webinar. They will provide an overview of UBC and our graduate programs, as well as application advice and more!


Admission Information & Requirements

In order to apply to this program, the following components may be required.

Online Application

All applicants must complete an online application form and pay the application fee to be considered for admission to UBC.

Minimum Academic Requirements

The Faculty of Graduate and Postdoctoral Studies establishes the minimum admission requirements common to all applicants, usually a minimum overall average in the B+ range (76% at UBC). The graduate program that you are applying to may have additional requirements. Please review the specific requirements for applicants with credentials from institutions in:

Each program may set higher academic minimum requirements. Meeting the minimum requirements does not guarantee admission as it is a competitve process.


All applicants have to submit transcripts from all past post-secondary study. Document submission requirements depend on whether your institution of study is within Canada or outside of Canada.

English Language Test

Applicants from a university outside Canada in which English is not the primary language of instruction must provide results of an English language proficiency examination as part of their application. Tests must have been taken within the last 24 months at the time of submission of your application.

Minimum requirements for the two most common English language proficiency tests to apply to this program are listed below:


Other Test Scores

Some programs require additional test scores such as the Graduate Record Examination (GRE) or the Graduate Management Test (GMAT). The requirements for this program are:

The GRE is not required.

Letters of Reference

A minimum of three references are required for application to graduate programs at UBC. References should be requested from individuals who are prepared to provide a report on your academic ability and qualifications. 

Statement of Interest

Many programs require a statement of interest, sometimes called a "statement of intent", "description of research interests" or something similar.


Students in research-based programs usually require a faculty member to function as their supervisor. Please follow the instructions provided by each program whether applicants should contact faculty members.

This program has not specified whether applicants should reach out to faculty members. Please review the program website for additional details.

Citizenship Verification

Permanent Residents of Canada must provide a clear photocopy of both sides of the Permanent Resident card.

Tuition & Financial Support


FeesCanadian Citizen / Permanent Resident / Refugee / DiplomatInternational
Application Fee$106.00$168.25
Tuition *
Installments per year33
Tuition per installment$1,698.56$2,984.09
Tuition per year
(plus annual increase, usually 2%-5%)
Int. Tuition Award (ITA) per year (if eligible) $3,200.00 (-)
Other Fees and Costs
Student Fees (yearly)$944.51 (approx.)
Costs of living (yearly)starting at $16,954.00 (check cost calculator)
* Regular, full-time tuition. For on-leave, extension, continuing or part time (if applicable) fees see UBC Calendar.
All fees for the year are subject to adjustment and UBC reserves the right to change any fees without notice at any time, including tuition and student fees. Tuition fees are reviewed annually by the UBC Board of Governors. In recent years, tuition increases have been 2% for continuing domestic students and between 2% and 5% for continuing international students. New students may see higher increases in tuition. Admitted students who defer their admission are subject to the potentially higher tuition fees for incoming students effective at the later program start date. In case of a discrepancy between this webpage and the UBC Calendar, the UBC Calendar entry will be held to be correct.

Financial Support

Applicants to UBC have access to a variety of funding options, including merit-based (i.e. based on your academic performance) and need-based (i.e. based on your financial situation) opportunities.

Program Funding Packages

Applicants who are interested in the production, preparation, and application of nuclear isotopes for science and medicine may consider the IsoSiM program that provides additional funding and professional development opportunities. Applicants who are interested in quantum materials may consider the QuEST program. Applicants who are interested in nanomaterials synthesis, characterization and application, and nanoscience instrumentation may consider the NanoMat program.

All full-time students who begin a UBC-Vancouver PhD program in September 2018 or later will be provided with a funding package of at least $18,000 for each of the first four years of their PhD. The funding package may consist of any combination of internal or external awards, teaching-related work, research assistantships, and graduate academic assistantships. Please note that many graduate programs provide funding packages that are substantially greater than $18,000 per year. Please check with your prospective graduate program for specific details of the funding provided to its PhD students.

Scholarships & awards (merit-based funding)

All applicants are encouraged to review the awards listing to identify potential opportunities to fund their graduate education. The database lists merit-based scholarships and awards and allows for filtering by various criteria, such as domestic vs. international or degree level.

Teaching Assistantships (GTA)

Graduate programs may have Teaching Assistantships available for registered full-time graduate students. Full teaching assistantships involve 12 hours work per week in preparation, lecturing, or laboratory instruction although many graduate programs offer partial TA appointments at less than 12 hours per week. Teaching assistantship rates are set by collective bargaining between the University and the Teaching Assistants' Union.

Research Assistantships (GRA)

Many professors are able to provide Research Assistantships (GRA) from their research grants to support full-time graduate students studying under their direction. The duties usually constitute part of the student's graduate degree requirements. A Graduate Research Assistantship is a form of financial support for a period of graduate study and is, therefore, not covered by a collective agreement. Unlike other forms of fellowship support for graduate students, the amount of a GRA is neither fixed nor subject to a university-wide formula. The stipend amounts vary widely, and are dependent on the field of study and the type of research grant from which the assistantship is being funded. Some research projects also require targeted research assistance and thus hire graduate students on an hourly basis.

Financial aid (need-based funding)

Canadian and US applicants may qualify for governmental loans to finance their studies. Please review eligibility and types of loans.

All students may be able to access private sector or bank loans.

Foreign government scholarships

Many foreign governments provide support to their citizens in pursuing education abroad. International applicants should check the various governmental resources in their home country, such as the Department of Education, for available scholarships.

Working while studying

The possibility to pursue work to supplement income may depend on the demands the program has on students. It should be carefully weighed if work leads to prolonged program durations or whether work placements can be meaningfully embedded into a program.

International students enrolled as full-time students with a valid study permit can work on campus for unlimited hours and work off-campus for no more than 20 hours a week.

A good starting point to explore student jobs is the UBC Work Learn program or a Co-Op placement.

Tax credits and RRSP withdrawals

Students with taxable income in Canada may be able to claim federal or provincial tax credits.

Canadian residents with RRSP accounts may be able to use the Lifelong Learning Plan (LLP) which allows students to withdraw amounts from their registered retirement savings plan (RRSPs) to finance full-time training or education for themselves or their partner.

Please review Filing taxes in Canada on the student services website for more information.

Cost Calculator

Applicants have access to the cost calculator to develop a financial plan that takes into account various income sources and expenses.

Career Outcomes

108 students graduated between 2005 and 2013: 2 graduates are seeking employment; for 11 we have no data (based on research conducted between Feb-May 2016). For the remaining 95 graduates:

RI (Research-Intensive) Faculty: typically tenure-track faculty positions (equivalent of the North American Assistant Professor, Associate Professor, and Professor positions) in PhD-granting institutions
TI (Teaching-Intensive) Faculty: typically full-time faculty positions in colleges or in institutions not granting PhDs, and teaching faculty at PhD-granting institutions
Term Faculty: faculty in term appointments (e.g. sessional lecturers, visiting assistant professors, etc.)
Sample Employers in Higher Education
University of British Columbia (7)
Simon Fraser University (2)
Goethe University Frankfurt
Stanford University
Queen Mary University of London
University of Michigan - Ann Arbor
Duke University
Washington University in St Louis
Beijing Normal University
Harvard University
Sample Employers Outside Higher Education
BC Cancer Agency (8)
United States Department of Energy (3)
1QB Information Technologies (1QBit) (2)
European Organization for Nuclear Research (CERN) (2)
MTT Innovation Inc. (2)
Google (2)
Coanda Research and Development Corporation (2)
Bayer (2)
Ottawa Hospital
Sample Job Titles Outside Higher Education
Medical Physicist (10)
Data Scientist (2)
Research Scientist (2)
Engineer (2)
Director (2)
Software Engineer (2)
Staff Scientist (2)
Senior Strategy Consultant
Product Engineer
Chief Executive Officer
PhD Career Outcome Survey
You may view the full report on career outcomes of UBC PhD graduates on
These data represent historical employment information and do not guarantee future employment prospects for graduates of this program. They are for informational purposes only. Data were collected through either alumni surveys or internet research.

Enrolment, Duration & Other Stats

These statistics show data for the Doctor of Philosophy in Physics (PhD). Data are separated for each degree program combination. You may view data for other degree options in the respective program profile.

Enrolment Data

New registrations1612141212
Total enrolment117114108114120

Completion Rates & Times

This program has a graduation rate of 84.72% based on 72 students admitted between 2006 - 2009. Based on 59 graduations between 2015 - 2018 the minimum time to completion is 3.33 years and the maximum time is 9.00 years with an average of 5.81 years of study. All calculations exclude leave times.
Admissions data refer to all UBC Vancouver applications, offers, new registrants for each year, May to April [data updated: 10 March 2020]. Enrolment data are based on March 1 snapshots. Program completion data are only provided for datasets comprised of more than 4 individuals. Rates and times of completion depend on a number of variables (e.g. curriculum requirements, student funding), some of which may have changed in recent years for some programs [data updated: 27 October 2019].

Research Supervisors

This list shows faculty members with full supervisory privileges who are affiliated with this program. It is not a comprehensive list of all potential supervisors as faculty from other programs or faculty members without full supervisory privileges can request approvals to supervise graduate students in this program.

  • Affleck, Ian Keith (Condensed matter theory, quantum magnetism, quantum impurities, high-Tc superconductivity, low dimensional magnetism, quantum wires and dots, high energy theory, impurities in metals)
  • Aronson, Meigan (heavy-ferromagnetic compounds, charge density waves, magnetic nanoparticles)
  • Bagger, Jonathan (High energy physics, String theory, Bagger-Lambert-Gustavsson action, Supersymmetry, Superspace, Supergravity)
  • Berciu, Mona (condensed matter theory, strongly correlated systems, polarons, bipolarons)
  • Boley, Aaron (Astronomy and Astrophysics; Planet formation, protoplanetary disk evolution, formation of meteorite parent bodies)
  • Bonn, Douglas Andrew (Condensed matter, high temperature superconductors, microwave measurements, crystal growth)
  • Bryman, Douglas (Science and Knowledge, Experimental Particle Physics, Applied physics, physics)
  • Burke, Sarah (Scanning probe microscopy, organic materials, nanoscale materials, surface physics, photovoltaics )
  • Choptuik, Matthew (Theoretical physics, Relativity/Computational Physics )
  • Damascelli, Andrea (Electronic structure of solids, strongly correlated electron systems, low dimensional spin systems, thin films and nanostructures, transition metal oxides, high-Tc superconductors, linear and nonlinear optical spectroscopies, angle-resolved photoemission spectroscopy, photoelectron spectroscopy, synchrotron based spectroscopies., Electronic structure of novel complex systems in nanostructured materials)
  • Folk, Joshua (Quantum devices, Majorana fermions, Strongly correlated electronics, Topological phenomena, Fractional quantum Hall effect, Vanderwaals heterostructures)
  • Franz, Marcel (Condensed matter theory )
  • Gay, Colin (Experimental subatomic physics, Beyond Standard Model physics, Extra dimensions)
  • Gladman, Brett (Astronomy, Planetary Science, meteorites, astrobiology, Solar system formation and evolution)
  • Hallas, Alannah (Quantum Phenomena, Quantum materials, Materials design and discovery, magnetism)
  • Halpern, Mark (Cosmology, Cosmic background radiation, history of star formation, measuring the geometry and contents of the Universe, satellites, balloon-borne telescopes, the physics of music, Physics of music, Cosmic Microwave Background, Physical Cosmology, Star formation history)
  • Hasinoff, Michael (Low-energy particle physics)
  • Hearty, Christopher (Subatomic physics, Experimental Particle Physics Research)
  • Heyl, Jeremy (Quantum Phenomena, Stellar, Astrophysics, Stellar Physics, Quantum-Field Theory, Neutron Stars, Black Holes)
  • Hickson, Paul (cosmology, galaxies, telescopes, adaptive optics., Astronomy, astrophysics, Galaxies, clusters, instrumentation, adaptive optics)
  • Hinshaw, Gary (cosmology, cosmic background radiation, Cosmology, Measuring diffuse background radiations)
  • Jones, David (Atomic, optical and molecular physics,Ultrafast Optics, Spectroscopy)
  • Karczmarek, Joanna (String theory, Matrix models, Emergent spacetime and gravity, Noncommutative geometry)
  • Kiefl, Robert (Quantum Phenomena, condensed matter physics, polarons, multiferroics, superconductivity, magnetism)


Doctoral Citations

A doctoral citation summarizes the nature of the independent research, provides a high-level overview of the study, states the significance of the work and says who will benefit from the findings in clear, non-specialized language, so that members of a lay audience will understand it.
Year Citation
2020 Dr. Caiazzo studied the X-ray emission of neutron stars and black holes. She modelled the polarization of light from pulsars and black holes that accumulate material from companion stars, and from highly magnetized neutron stars called magnetars. She has shown that X-ray polarization can answer many of our questions about these fascinating objects.
2020 Dr. Su developed two radiation therapy modalities, known as trajectory-based treatments, where the couch moves continuously. This work introduces a novel algorithm for treatment planning, which can accurately model proposed treatment modalities. This method can achieve plans superior to those generated by standard planning systems.
2020 Dr. Wiggermann examined two MRI techniques in the context of myelin health in multiple sclerosis. Through simulations, studies of tissue samples, control and MS populations, she linked the MR measures to the biology of MS. By establishing their robustness for probing myelin at different field strength, she addressed a key issue of using MRI for MS.
2020 Dr. Rettie studied the performance of muon reconstruction and identification within the ATLAS experiment at the Large Hadron Collider in Switzerland. He contributed to a search for new phenomena in events with two muons by analyzing proton-proton collisions. This search resulted in world-leading constraints placed on new physics scenarios.
2020 Dr. Zwartsenberg discovered a novel quantum mechanical approach to switching materials from electrically conductive, to electrically non-conductive. His results are not only of importance to the understanding of fundamental physics, but also open up new avenues to explore in the design of future electronics and sensing materials.
2020 Dr. Sajadi investigated the electronic properties of 2D topological insulators (TIs), a new class of materials with distinct electronic properties, and studied the interplay of 2D TIs with another exotic phase of matter: superconductivity. This work enhances our understanding of 2D TIs, and will pave the way towards topological quantum computing.
2020 Dr. Hernandez used state-of-the-art nuclear models and statistics to study the imprints of the nucleus on light from exotic atoms in which the nucleus is orbited by a muon instead of an electron. This work sheds light on recent experimental discrepancies and helps illuminate our understanding of the interplay between the nucleus and light.
2020 Dr. Moroz developed a method to rapidly measure the concentration of a contrast agent in the vein of a mouse tail. The measurement requires only one sample per time point, allowing for it to be acquired concurrently with an MR scan of a tumor. This provides a more accurate assessment of the tumor.
2020 Dr. Chatzichristos developed a novel experimental technique that uses nuclear physics to study the diffusion of lithium ions in solid materials. Using this technique, he was able to resolve several questions about lithium diffusion in materials such as rutile titanium dioxide (a crystal), which may be used in a next generation lithium-ion battery.
2020 Dr. Moosvi did his research at the intersection of physics and medicine. He developed new techniques to probe the tumour microenvironments in mice. The most promising technique is oxygen-enhanced MRI, which supports the delivery of cancer therapies targeted at tumours whose lack of oxygen makes them particularly difficult to treat.


Further Program Information


Physics provides research opportunities in many subfields of physics, including

  • applied physics: this effort has spawned a number of spin-off companies.
  • medical physics: be involved in a broad range of medical physics research in the areas of radiation therapy, medical imaging, biomedical optics and radiation biophysics.
  • biophysics: the application of quantitative principles and methods to biological systems.
  • nuclear and particle physics: the aim of subatomic physics is to understand matter and the fundamental forces in the universe and ultimately form a Theory of Everything.
  • astronomy and astrophysics: study stars, galaxies, the material in between, and the Universe as a whole.
  • atomic, molecular, and optical physics: this field is rapidly expanding and serves as the basis for many modern technological innovations.
  • condensed matter physics is concerned with understanding and exploiting the properties of solids and liquids and the large area that this covers makes it the largest field of contemporary physics.
  • theoretical physics: Gravity and Relativity, String Theory, High Energy Physics, and Condensed Matter Theory, to Quantum Information and Biophysics

Faculty Overview

Program Identifier


Supervisor Search


Departments/Programs may update graduate degree program details through the Faculty & Staff portal. To update the application inquiries contact details please use this form.

Considering Vancouver as your next home?

This city won’t disappoint. It has it all: sea, parks, mountains, beaches and all four seasons, including beautiful summers and mild, wet winters with snow.