Christopher Hearty

Professor

Relevant Degree Programs

 
 

Graduate Student Supervision

Doctoral Student Supervision (Jan 2008 - Nov 2019)
Cluster Counting in Drift Chambers for Particle Identification and Tracking (2016)

Drift chambers are a type of gaseous ionization detector used in high-energy physics experiments. They can identify charged particles and measure their momentum. When a high-energy charged particle crosses the drift chamber, it ionizes the gas. The liberated electrons drift towards positive-high-voltage wires where an ionization avalanche amplifies the signal. Traditional drift chambers use only the arrival time of the cluster of charge from the closest ionization for tracking, and use only the integral of the whole signal for particle identification. We constructed prototype drift chambers with the ability to resolve the charge cluster signals from individual ionization events. Different algorithms were studied and optimized to best detect the clusters. The improvementsto particle identification were studied using a single-cell prototype detector, while the improvements to particle tracking were studied using a multiple-layer prototype. The prototypes were built in the context of initial work for the now-cancelled SuperB project, but the results apply to any drift chambers used in flavour-factory experiments. The results show that the choice of algorithm is not as critical as properly optimizing the algorithm parameters for the dataset. We find that a smoothing time of a few nanoseconds is optimal. This corresponds to bandwidth of a few hundred megahertz, indicating that gigahertz-bandwidth electronics are not required to make use of this technique. Particle identification performance is quantified by the fraction of real pions correctly identified as pions with at most 10% of real pions mis-identified as muons. In our single-cell prototype, the performance increases from 50% to 60% of pions correctly identified when cluster counting is combined with a traditional truncated-mean charge measurement, compared to the charge measurement alone. Tracking performance is quantified by the single-cell resolution: the uncertainty in measuring the distance of charged particle tracks from a given sense wire. In our multiple-layer prototype, the single-cell tracking resolution using traditional methods is measured to be ~150μm. With cluster counting implemented, the resolution is unchanged, indicating that the additional cluster information is not useful.

View record

Search for a light Higgs boson with the BABAR detector (2015)

In the Standard Model of particle physics, the Higgs boson is an elementary particle required to explain the origin of mass. One extension, the next-to-minimal supersymmetric Standard Model, predicts the existence of a GeV/c² scale Higgs boson, denoted A^0. This can be produced at B meson factories such as the BABAR experiment at the Stanford Linear Accelerator Center. We study e⁺e- → Υ(2S)→ π⁺π-Y(1S), Y(1S)→ γA^0, A^0 → gg, ss-bar, cc-bar decays using data collected by the BABAR detector at a centre-of-mass energy of 10.02 GeV/c².The search for A^0 → gg or ss-bar is performed by fully reconstructing the entire decay chain. We search for an excess of events relative to expected backgrounds in the reconstructed A^0 mass spectra. No significant excess is found. We set upper limits on product branching fraction B(Y(1S) → γA^0)xB(A^0 → gg) from 1x10-⁶ to 2x10-² for A^0 masses from 0.50 to 9.00 GeV/c², and B(Y(1S) → γA^0)x B(A^0 → ss-bar) from 5x10-⁶ to 1x10-³ for A^0 masses from 1.50 to 9.00 GeV/c².The search for A^0 → cc-bar is done by reconstructing the dipion transition, the radiative photon, and a D meson as a tag for cc-bar decays. We infer the mass of an A^0 candidate from the recoil of the dipion transition and the radiative photon. No significant signal is seen in the data and we set upper limits on product branching fraction B(Y(1S) → γA^0)xB(A^0 → cc-bar) from 7x10-⁵ to 2x10-³ for A^0 masses from 4.00 to 8.95 GeV/c² and 9.10 to 9.25 GeV/c².These are the first measurements to date and set constraints on the next-to-minimal supersymmetric Standard Model.Proposals to improve drift chamber aging studies and particle identification are included as part of the thesis. We propose to improve aging studies with prototypes that better resemble a full-scale drift chamber. Using TRIUMF beam data, we establish that at a particle identification efficiency of 95%, misidentification rates may be reduced from 2.2% to 1.9% by including likelihood tests and Kolmogorov-Smirnov tests and to 0.5% by including cluster counting.

View record

A Study of B --> CCBAR Gamma K in the BABAR Experiment (2009)

No abstract available.

Master's Student Supervision (2010 - 2018)
A Low Gain Fine Mesh Photomultiplier Tube for Pure CsI (2015)

The increased luminosity of the upgraded SuperKEKB accelerator in turnmandates an upgrade to the Belle detector. One proposed upgrade is toexchange the existing thallium doped cesium iodide scintillation crystals(CsI(Tl)) in the endcap calorimeter with pure cesium iodide (CsI). Oneadvantage of pure CsI is its shorter decay time constant. This would reducethe amount of time taken to process each event, which in turn reduces thechance of simultaneously measuring the energy of different two particles(pileup). Hamamatsu Photonics has produced the R11283 photomultipliertube with a nominal average gain of 255 ± 11, ideal for measuring the lightproduced by scintillation in pure CsI while in a magnetic field. A prototypearray of 16 photomultiplier tubes was built and tested at TRIUMF. Thiswork documents the characterization of the photomultiplier tube as wellas University of Montreal’s pre-amplification and shaper electronics. Theprimary results can be split into four distinct measurements: the electronicnoise, the short term stability, the excess noise factor, and the lifetime. Theelectronic noise was initially measured with cosmic rays and was found to be(77 ± 2) keV using a Belle II pure CsI crystal. The short term stability wasmeasured with a set of calibration sources, and the variation over a weekwas (0.28 ± 0.03)% after temperature corrections. The excess noise factorwas found to be (1.9 ± 0.1 ± 0.4) using a pulsed UV laser. This result wasaccompanied by an additional electronic noise measurement of 1730 ± 33electrons at the anode. The lifetime was found using a UV LED array anda ²⁰⁷Bi source, with the gain × quantum efficiency reduced to (93 ± 3)%after about 48 days of aging in real time. This was equivalent to 70 yearsof standard Belle II operation with 7 C having passed through the anode.There were several sets of aging behaviours observed, with some evidencethat the anode charge is not the sole factor in aging.

View record

 
 

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.

 
 

Learn about our faculties, research, and more than 300 programs in our 2021 Graduate Viewbook!