Joy Marion Richman

Professor

Research Classification

Embryonic Development
Cell Signaling
Congenital Anomalies
Growth Factors

Research Interests

Developmental biology
craniofacial development
Evo-Devo
reptilian tooth development
chicken embryo limb development
orofacial clefting

Relevant Degree Programs

 

Research Methodology

chicken embyro manipulations in ovo
immunofluorescence
in situ hybridization
primary cell culture
skeletal staining
3D imaging
retroviral transgenesis

Recruitment

Complete these steps before you reach out to a faculty member!

Check requirements
  • Familiarize yourself with program requirements. You want to learn as much as possible from the information available to you before you reach out to a faculty member. Be sure to visit the graduate degree program listing and program-specific websites.
  • Check whether the program requires you to seek commitment from a supervisor prior to submitting an application. For some programs this is an essential step while others match successful applicants with faculty members within the first year of study. This is either indicated in the program profile under "Requirements" or on the program website.
Focus your search
  • Identify specific faculty members who are conducting research in your specific area of interest.
  • Establish that your research interests align with the faculty member’s research interests.
    • Read up on the faculty members in the program and the research being conducted in the department.
    • Familiarize yourself with their work, read their recent publications and past theses/dissertations that they supervised. Be certain that their research is indeed what you are hoping to study.
Make a good impression
  • Compose an error-free and grammatically correct email addressed to your specifically targeted faculty member, and remember to use their correct titles.
    • Do not send non-specific, mass emails to everyone in the department hoping for a match.
    • Address the faculty members by name. Your contact should be genuine rather than generic.
  • Include a brief outline of your academic background, why you are interested in working with the faculty member, and what experience you could bring to the department. The supervision enquiry form guides you with targeted questions. Ensure to craft compelling answers to these questions.
  • Highlight your achievements and why you are a top student. Faculty members receive dozens of requests from prospective students and you may have less than 30 seconds to peek someone’s interest.
  • Demonstrate that you are familiar with their research:
    • Convey the specific ways you are a good fit for the program.
    • Convey the specific ways the program/lab/faculty member is a good fit for the research you are interested in/already conducting.
  • Be enthusiastic, but don’t overdo it.
Attend an information session

G+PS regularly provides virtual sessions that focus on admission requirements and procedures and tips how to improve your application.

 

Doctoral students
Postdoctoral Fellows
2019

The role of non-canonical WNT signaling in facial and limb development in the chicken embryo
Rare diseases - validation of disease-causing human variants in animal models
The molecular basis of the ever-renewing reptilian dentition using the gecko model

I am open to hosting Visiting International Research Students (non-degree, up to 12 months).

Postdoctoral Fellows

  • Kirstin Brink (Morphology, Embryonic Development, Biological and Biochemical Mechanisms, Evolution and Phylogenesis, Dental Health)

Graduate Student Supervision

Doctoral Student Supervision (Jan 2008 - May 2019)
Analysis of WNT5A function in development and disease using the chicken model (2014)

Mouse and human genetic data suggests that Wnt5a is required for jaw development but the specific role in facial skeletogenesis and morphogenesis is unknown. The aim of this thesis is to study functions of WNT5A during mandibular development in chicken embryos.We initially determined that WNT5A is expressed in developing Meckel's cartilage but in mature cartilage expression was decreased to background. This pattern suggested that WNT5A is regulating chondrogenesis so to determine whether initiation, differentiation or maintenance of matrix was affected I used primary cultures of mandibular mesenchyme. I found that Wnt5a conditioned media allowed normal initiation and differentiation of cartilage but the matrix was subsequently lost. Collagen II and aggrecan, two matrix markers, were decreased in treated cultures. Degradation of matrix was due to the induction of metalloproteinases, MMP1, MMP13, and ADAMTS5 and was rescued by an MMP antagonist. The effects of Wnt5a on cartilage were mainly due to stimulation of the non-canonical JNK/PCP pathway as opposed to antagonism of the canonical Wnt pathway.To increase the clinical relevance of my work I studied the functional consequences of two human WNT5A mutations (C182R and C83S) causing human Robinow syndrome. Retroviruses containing mutant and wild-type versions of WNT5A caused shortening of beaks and limbs; however, the phenotypes were more frequent and severe with mutations. Mechanisms responsible for micrognathia were assessed. Decreased cell proliferation and impaired chondrocyte organization and intercalation were seen with all constructs. The effects of mutant proteins on the migration of mesenchymal cells were tested in organ cultures of the mandible. The C83S and to a lesser extent C182R forms of WNT5A inhibited the normal migration of dye-labeled mesenchymal cells. The lack of cell migration was similar to that reported in Wnt5a null mice and therefore suggested that the WNT5A mutations are causing a loss-of-function.We conclude that WNT5A is required during early chondrogenesis to block canonical signaling thereby allowing cartilage to form. In addition, WNT5A is required for cells to migrate within the mandible and perhaps to form the elongated shape of the lower jaw. Finally WNT5A in conditions of excess has detrimental effects on cartilage integrity.

View record

Master's Student Supervision (2010 - 2018)
Longitudinal studies on tooth replacement in the leopard gecko (2015)

The leopard gecko is an emerging reptilian model for the molecular basis of indefinite tooth replacement. Here we characterize the tooth replacement frequency and pattern of tooth loss in the normal adult gecko. We chose to perturb the system of tooth replacement by activating the Wingless signaling pathway (Wnt). Misregulation of Wnt leads to supernumerary teeth in mice and humans. We hypothesized by activating Wnt signaling with LiCl, tooth replacement frequency would increase. To measure the rate of tooth loss and replacement, weekly dental wax bites of 3 leopard geckos were taken over a 35-week period. The present/absent tooth positions were recorded. During the experimental period, the palate was injected bilaterally with NaCl (control) and then with LiCl. The geckos were to be biological replicates. Symmetry was analyzed with parametric tests (repeated measures ANOVA, Tukey’s post-hoc), while time for emergence and total absent teeth per week were analyzed with non-parametric tests (Kruskal-Wallis ANOVA, Mann-Whitney U post-hoc and Bonferroni Correction). The average replacement frequency was 6-7 weeks and posterior-to-anterior waves of replacement were formed. Right to left symmetry between individual tooth positions was high (>80%) when all teeth were included but dropped to 50% when only absent teeth were included. Two animals were followed for 14 weeks after NaCl injections and 14 weeks after LiCl injections. NaCl did not affect the replacement dentition but LiCl delayed and disrupted the pattern of replacement. The phenotypes were more severe for one animal including 1) increased time before emergence, 2) increased total number of absent teeth per week, 3) a greater effect on anterior teeth and 4) disruption of symmetry. The most affected period began 7 weeks post LiCl injection. At the end of the study, in vitro CT scans of both animals revealed normal patterns of unerupted teeth however there was bone loss in one animal. Gecko tooth replacement is rapid enough to be useful for longitudinal studies. Between-animal variation is high when studying individual teeth therefore each animal should be used as its own control. Future work includes increasing the biological replicates and detailed molecular studies to confirm the effect of LiCl.

View record

Evaluating facial ontogeny of avian embryos using 3D geometric morphometrics (2014)

Objectives: In order to study abnormal facial development, reference standards of normal development are required. It is challenging to obtain 3D data on early embryos, since they are comprised of non-differentiated tissue. We used optical projection tomography (OPT) (Bioptonics, UK), which images transparent specimens with UV light. Here we used carefully staged chicken embryos to measure facial morphogenesis over time.Methods: Chicken eggs (n=32) were incubated for 3.5-6 days (stage 20, 24, 28, 29). Embryo heads were fixed in formaldehyde, embedded in agarose, dehydrated in methanol, and then cleared in Benzyl Alcohol Benzyl Benzoate. Embryos were scanned with the OPT, images were reconstructed, and then the head was digitally resliced in the frontal plane using NRecon and CTan. Resliced files were imported into Amira, facial prominences were outlined, and isosurfaces were created. Volumetric measurements were assessed using Amira. Landmarks were applied to the surface of each prominence using Landmark. These landmarks were then superimposed from different embryos using MorphoJ, whereby they underwent Procrustes superimposition, Principal Component Analysis, Canonical Variate Analysis, and Discriminant Function Analysis.Results: Traditional morphometrics revealed that the greatest amount of growth was a 24-fold difference in volume of the lateral nasal prominence between stages 20 and 29, followed by the maxillary, mandibular, and frontonasal mass. Geometric morphometrics revealed that embryonic facial prominences had minimal changes in shape between stages 20 and 24, however, after this time, there was more separation of the data in morphospace. Strikingly, the greatest morphological change was between stages 28 and 29, which was only 12 hours apart. This rapid change suggests that other mechanisms in addition to cell proliferation are involved. In addition, the data show that major morphological changes precede lip fusion. Therefore, we can pinpoint our studies to stage 28, when critical events in the mesenchyme are taking place. Conclusion: Embryonic chicken facial prominences undergo major shape changes. Each prominence varies in morphology with respective stage, with the frontonasal mass and mandibular prominence having the most dynamic shape changes.

View record

Analysis of tooth replacement in adult leopard geckos (2013)

Though most dentate vertebrates replace their teeth at least once in the course of their lives, the process of tooth replacement is poorly understood. This is mainly because the major tooth development model is the mouse which only has one generation of teeth. Our previous work suggested that tooth renewal in geckos might involve dental epithelial stem cells and that these putative stem cells become transit- amplifying cells when exposed to canonical WNTs. Here we further investigate this idea using adult leopard geckos (Eublepharis macularius). To further previous findings from our lab that the dental apparatus is a WNT responsive tissue we perturbed the WNT pathway by agonist and antagonist organ cultures of oral tissue explants. BIO stimulated proliferation at an intermediate concentration of 20 μM but not at higher or lower concentrations. This suggests that in vivo, cells are responding to gradients of WNT activity. We also looked at associated BMP and FGF pathways via in situ histology and organ culture manipulation respectively and found alternating patterns of gene expression. We then mapped areas of high canonical WNT signaling and found that nuclear staining for phospho beta catenin was principally found in the outer enamel epithelium and successional lamina. We moved to an in vivo strategy to allow for better tissue survival. Palatal injections of LiCl or the control reagent NaCl were delivered to the base of the maxillary teeth. We found that LiCl increased proliferation in the successional lamina and cervical loops, areas that normally have higher proliferation. We conclude that certain regions of the dental epithelium are sensitive to change in canonical WNT signaling and that this signaling is potentially kept to a localized region via BMP inhibition of the WNT pathway. Regions of the dental lamina that contain putative stem cells may require signals in addition to WNTs to stimulate the formation of transit amplifying cells. Future work will further elucidate the many signaling cascades required for tooth succession to occur.

View record

Mechanisms of development of the human soft palate (2013)

No abstract available.

How the turtle makes its palate without palatal shelves (2011)

Vertebrate craniofacial development and speciation has been studied in great detail, with major emphasis placed on mammalian species and highly derived archosaurs (birds). However, less is known about reptiles and in particular turtles. Turtles are speculated as to have retained many ancestral features of amniotes. Therefore, studying the Testudine (turtle) order not only helps to better understand amniote head development, but also the derivation of modern form. This thesis will investigate the formation of the hard palate in a representative turtle species, E. subglobosa, not only because of its evolutionary significance but also because this region is frequently affected in orofacial clefting. Origins of the palatine bones were first examined since other amniotes form these bones within outgrowths of the maxillary prominence, or the palatal shelves. Surprisingly no palatal shelves were found at the position or time when they should have been forming. Instead palatine bones condensed directly in the mesenchyme beneath the nasal cavity Furthermore there was no evidence from cell proliferation or apoptosis analysis of the maxillary prominences that vestigial shelves were ever present. The hypothesis following was that gene expression in the maxillary prominences might be different in turtles compared to the chicken or mouse in which shelves do form. I found no major differences but interestingly several of the genes I studied were also markers of the primitive stomodeum. Results show the turtle retains gene expression patterns of the chicken stomodeum, the primitive oral roof before palatal shelf formation, suggesting the turtle oral roof is still primitive in nature rather than advanced in other amniotes. This unfamiliar mechanism of hard palate development with no vestigial traits of palatal shelf formation supports arguments for a more basal placement of the turtle in the phylogenetic tree. Contrary to these findings, the similarity in gene expression and sequence to the chicken argues for a more derived placement closer to the archosaurs. While these present results do not allow for confident placement of the turtle as more basal or derived in the amniote tree, the data collected shows that ontological studies can help shed light on evolutionary debates.

View record

The role of endogenous retinoic acid in jaw development (2011)

The aim of this thesis is to study the effects of reducing retinoic acid (RA) levels in the embryonic face on jaw morphogenesis. One member of the Cytochrome P26 class of enzymes, CYP26A1, which degrades retinol products, was locally overexpressed in chicken embryos. I hypothesized that lowering RA levels would either affect jaw patterning, cell survival and/or cytodifferentiation. Chicken embryos at stage 15 and 20 (E2.5, 3.5) were injected with RCAS

View record

Publications

 
 

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.