Terrance Preston Snutch


Research Classification

Research Interests

Brain Disorders
Animal models
Drug discovery & development

Relevant Thesis-Based Degree Programs

Research Options

I am available and interested in collaborations (e.g. clusters, grants).
I am interested in and conduct interdisciplinary research.
I am interested in working with undergraduate students on research projects.

Research Methodology

molecular genetics
MinION sequencing


Doctoral students
Postdoctoral Fellows
I support public scholarship, e.g. through the Public Scholars Initiative, and am available to supervise students and Postdocs interested in collaborating with external partners as part of their research.
I support experiential learning experiences, such as internships and work placements, for my graduate students and Postdocs.
I am interested in supervising students to conduct interdisciplinary research.

Complete these steps before you reach out to a faculty member!

Check requirements
  • Familiarize yourself with program requirements. You want to learn as much as possible from the information available to you before you reach out to a faculty member. Be sure to visit the graduate degree program listing and program-specific websites.
  • Check whether the program requires you to seek commitment from a supervisor prior to submitting an application. For some programs this is an essential step while others match successful applicants with faculty members within the first year of study. This is either indicated in the program profile under "Admission Information & Requirements" - "Prepare Application" - "Supervision" or on the program website.
Focus your search
  • Identify specific faculty members who are conducting research in your specific area of interest.
  • Establish that your research interests align with the faculty member’s research interests.
    • Read up on the faculty members in the program and the research being conducted in the department.
    • Familiarize yourself with their work, read their recent publications and past theses/dissertations that they supervised. Be certain that their research is indeed what you are hoping to study.
Make a good impression
  • Compose an error-free and grammatically correct email addressed to your specifically targeted faculty member, and remember to use their correct titles.
    • Do not send non-specific, mass emails to everyone in the department hoping for a match.
    • Address the faculty members by name. Your contact should be genuine rather than generic.
  • Include a brief outline of your academic background, why you are interested in working with the faculty member, and what experience you could bring to the department. The supervision enquiry form guides you with targeted questions. Ensure to craft compelling answers to these questions.
  • Highlight your achievements and why you are a top student. Faculty members receive dozens of requests from prospective students and you may have less than 30 seconds to pique someone’s interest.
  • Demonstrate that you are familiar with their research:
    • Convey the specific ways you are a good fit for the program.
    • Convey the specific ways the program/lab/faculty member is a good fit for the research you are interested in/already conducting.
  • Be enthusiastic, but don’t overdo it.
Attend an information session

G+PS regularly provides virtual sessions that focus on admission requirements and procedures and tips how to improve your application.



These videos contain some general advice from faculty across UBC on finding and reaching out to a potential thesis supervisor.

Graduate Student Supervision

Doctoral Student Supervision

Dissertations completed in 2010 or later are listed below. Please note that there is a 6-12 month delay to add the latest dissertations.

Functional contribution of L-type calcium channels to basolateral amygdala excitability and pathophysiology (2021)

Calcium influx via neuronal L-type calcium channels (LTCCs) has been implicated in regulating activity-dependent gene transcription, synaptic plasticity, and synaptogenesis. While gain-of-function mutations in neuronal LTCCs have been linked to neurodevelopmental diseases, including autism spectrum disorders (ASDs), the role of LTCCs in regulating neuronal electrophysiological properties during early development remains unclear. The amygdala complex contributes toward emotional processes such as fear, anxiety and social cognition and studies suggest that increased excitability of basolateral amygdala (BLA) principal neurons underlie certain neuropsychiatric disorders. While LTCCs are expressed throughout the BLA, direct evidence for increased LTCC activity affecting BLA excitability and potentially contributing to disease pathophysiology is lacking. In Chapter Ⅰ of my study I investigated the contributions of LTCCs to the excitability and synaptic activity of BLA principal neurons at early developmental stages (postnatal day 7 (P7) and P21). By directly applying LTCC agonist (S)-Bay K8644 (BayK) onto brain slices, I found that BLA principal neurons displayed distinct alterations between P7 and P21 in intrinsic excitability properties, including firing frequency response, spike-frequency adaptation and altered spontaneous neurotransmission. These results suggested the possibility that the functional increase of LTCC activity at different stages of neurodevelopment may lead to alterations to BLA neuronal network activity. To investigate the effects of increased LTCC activity as it might relate to the underlying mechanism of developmental disorders such as ASD, in Chapter Ⅱ I examined the effects of increased LTCC function in early development on long-lasting neuronal excitability, synaptic plasticity and behavioral phenotypes. Bilateral injection of BayK into the BLA at different early stages (P7 or P14) followed by recovery and testing at P28 showed enhanced BLA neuronal excitability, long-term potentiation, as well as altered social behaviors, anxiety and repetitive behaviors. Whereas P28 animals that received BayK injection at P21 did not display any differences compared to DMSO control. These results provide evidence for the contributions of LTCCs at different stages of neurodevelopment, as well as their role in inducing long-lasting alterations in neuronal networks and behavioral phenotypes. They also provide new insights into LTCC dysfunction as it is potentially related to amygdala-related neurological disorders.

View record

A PDZ-3 mediated physical and functional interaction between the Cav3.2 T-type calcium channel and neuronal nitric oxide synthase (2013)

T-type voltage-gated calcium channels are expressed throughout the central and peripheral nervous systems as well as in several non-neuronal tissues and contribute to variety of functions such as neuronal excitability, intracellular calcium influx, shaping action potentials, pace-making activity, hormone secretion, and neurotransmitter release. Of the three T-type channel isoforms, Cav3.2 is uniquely sensitive to redox modulation with oxidizing reagents inhibiting and reducing compounds enhancing channel activity. This modulation has been shown to alter firing patterns of reticular thalamic neurons and to affect the nociceptive threshold in vivo suggesting that redox modulation of Cav3.2 may play an important role in regulating neuronal activity. A potential source of oxidizing molecules in vivo is neuronal nitric oxide synthase (nNOS), a calcium dependent enzyme which synthesizes nitric oxide (NO) from arginine. Interestingly, the carboxyl terminus of Cav3.2 possesses a putative PDZ-3 binding ligand which is compatible with the PDZ-3 domain of nNOS. I hypothesize that Cav3.2 and nNOS physically interact via the PDZ-3 binding ligand of Cav3.2 and that this physical interaction mediates a functional interaction whereby Cav3.2 activity stimulates nNOS to produce NO which, in turn, inhibits Cav3.2 activity. Cav3.2 and nNOS were expressed in a heterologous system which allowed us to examine the putative PDZ-3 mediated interactions between the two proteins. Immunoprecipitation experiments using Cav3.2 specific antibodies demonstrate that Cav3.2 and nNOS can interact via the carboxyl PDZ-3 ligand of Cav3.2 and that this interaction is disrupted when the PDZ-3 ligand is mutated. Utilizing a NO sensitive fluorometric assay we show that Cav3.2 activity can stimulate nNOS to produce NO and that disruption the PDZ-3 interaction precludes nNOS activation. We also demonstrate that the PDZ-3 mediated physical interaction facilitates the inhibition of Cav3.2 by nNOS derived NO.Disruption of the Cav3.2/nNOS interaction in vivo using intraperitoneal injection of membrane permeable peptides designed to competitively disrupt the PDZ-3 interaction produces an exaggerated respiratory response to changes in available oxygen and a blunted response in the hyperoxic response test. These results indicate that Cav3.2 and nNOS physically and functionally interact to contribute to normal physiological processes.

View record

Molecular and Functional Characterization of Cardiac Cav3.2 T-type Calcium Channels (2011)

T-type calcium (Ca²⁺) channels contribute to the normal development of the heart and are also implicated in pathophysiological states such as cardiac hypertrophy. Functionally distinct Cav3 T-type Ca²⁺ channel isoforms can be generated by alternative splicing from each of three different Cav3 genes (Cav3.1, Cav3.2 and Cav3.3), although it remains to be described whether specific splice variants are associated with developmental stages and pathological conditions. Using full length cDNA generated from rat cardiac tissues, this study identified ten major regions of alternative splicing and systematically identified alternative splice variants of cardiac Cav3.2 channels. Quantitative real-time PCR analysis on the mRNA expression of the most common variants revealed preferential expression of Cav3.2(-25) splice variant channels in the newborn rat heart, whereas in the adult heart approximately equal levels of expression of both (+25) and (-25) exon variants was observed. In the adult stage of hypertensive rats, an increase in overall Cav3.2 mRNA expression and a shift towards the expression of Cav3.2(+25) containing channels as the predominant form was observed. This is the first evidence to show that cardiac Cav3.2 is subject to considerable splicing. Moreover, this thesis is also the first study to show developmental and pathological changes in expression of specific splice variants of the Cav3.2 channels. The biophysical characteristics of cloned Cav3.2 splice variants and T-type Ca²⁺ currents from dissociated cultured newborn ventricular myocytes were investigated using whole cell patch clamp analysis. This study showed variant-specific voltage-dependent facilitation (VDF) of Cav3.2 channels attributed to the exclusion of exon 25 in Cav3.2 transcripts. Lastly, this thesis is the first to provide evidence on VDF of T-type currents in rat ventricular myocytes.

View record

The contributions of Cav2.1 alternative splicing and calcium-dependent modulation to congenital migraine (2010)

Cav2.1 calcium (Ca²⁺) channels are expressed throughout the mammalian central nervous system where they mediate P/Q-type Ca²⁺ currents essential for neurotransmitter release at most fast synapses. In humans, naturally occurring mutations in the CACNA1A gene encoding Cav2.1 are associated with several severe congenital disorders including familial hemiplegic migraine type 1 (FHM-1).Alternative splicing of the Cav2.1 transcript generates multiple functionally distinct channel variants with unique spatial and temporal expression patterns. Yet, whether different Cav2.1 splice variants have distinct responses to FHM-1 missense mutations that relate to the localized, episodic nature of the FHM-1 phenotype has not been explored. Using recombinant Cav2.1 channels, we systematically compared the biophysical effects of three FHM-1 mutations in two prevalent Cav2.1 splice variants. All three FHM-1 mutations caused differential effects on voltage-dependent and kinetic properties when expressed in the short carboxyl terminus variant (Cav2.1 Δ47) compared to the long variant (Cav2.1 +47). Our findings provide important insight concerning the role of Cav2.1 alternative splicing and the pathophysiology of FHM-1.Ca²⁺-dependent facilitation (CDF) of Cav2.1 channels is a powerful means of channel control proposed to play a role in short-term facilitation of synaptic release during repetitive action potentials (APs). However, empirical evidence to support CDF of Cav2.1 as a relevant mechanism of synaptic facilitation in the CNS is limited. As such, short-term facilitation of synaptic release is generally attributed to enhanced vesicle release due to residual Ca²⁺ binding to sensor proteins that directly mediate vesicle fusion and transmitter release. However, we found that two FHM-1 mutations occluded CDF of Cav2.1 in both recombinant and native systems and cause a corresponding attenuation in short-term synaptic facilitation at the cerebellar parallel fibre to Purkinje synapse. This is the first evidence that presynaptic Ca²⁺ at this fast central synapse also enhances Ca²⁺ influx through Cav2.1 by means of CDF and acts as an additional required mechanism for short-term plasticity. Thus, the data supports the notion that CDF of Cav2.1 underlies key aspects of short-term plasticity in the CNS and provides the first evidence that FHM-1 mutations directly affect Cav2.1 CDF.

View record

Differential modulation of T-type voltage gated calcium channels by G-protein coupled receptors. (2008)

T-type voltage-gated calcium (Ca2+) channels play critical roles in controlling neuronal excitability, firing patterns, and synaptic plasticity, although the mechanisms and extent to which T-type Ca2+ channels are modulated by G-protein coupled receptors (GPCRs) remains largely unexplored. Investigations into T-type modulation within native neuronal systems have been complicated by the presence of multiple GPCR subtypes and a lack of pharmacological tools to separate currents generated by the three T-type isoforms; Cav3.1, Cav3.2, and Cav3.3. We hypothesize that specific Cav3 subtypes play unique roles in neuronal physiology due to their differential functional coupling to specific GPCRs. Co-expression of T-type channel subtypes and GPCRs in a heterologous system allowed us to identify the specific interactions between muscarinic acetylcholine (mAChR) or metabotropic glutamate (mGluR) GPCRs and individual Cav3 isoforms. Perforated patch recordings demonstrated that activation of Galpha-coupled GPCRs had a strong inhibitory effect on Cav3.3 T-type Ca2+ currents but either no effect or a stimulating effect on Cav3.1 and Cav3.2 peak current amplitudes. Further study of the inhibition of Cav3.3 channels by a specific Galpha-coupled mAChR (M1) revealed that this reversible inhibition was associated with a concomitant increase in inactivation kinetics. Pharmacological and genetic experiments indicated that the M1 receptor-mediated inhibition of Cav3.3 occurs specifically through a Galpha signaling pathway that interacts with two distinct regions of the Cav3.3 channel. As hypothesized, the potentiation of Cav3.1 channels by a Galpha-coupled mGluR (mGluR1) initially characterized in the heterologous system was also observed in a native neuronal system: the cerebellar Purkinje cell (PC). In recordings on PCs within acute cerebellar slices, we demonstrated that the potentiation of Cav3.1 currents by mGluR1 activation is strongest near the threshold of T-type currents, enhancing the excitability of PCs. Ultrafast two-photon Ca2+ imaging demonstrated that the functional coupling between mGluR1 and T-type transients occurs within dendritic spines, where synaptic integration and plasticity occurs. A subset of these experiments utilized physiological synaptic activation and specific mGluR1 antagonists in wild-type and Cav3.1 knock-out mice to show that the mGluR1-mediated potentiation of Cav3.1 T-type currents may promote synapse-specific Ca2+ signaling in response to bursts of excitatory inputs.

View record

Master's Student Supervision

Theses completed in 2010 or later are listed below. Please note that there is a 6-12 month delay to add the latest theses.

Behavioural effects of novel clinical candidate drugs, l-tetrahydropalmatine (l-THP) and Z944, on morphine withdrawal-induced hyperalgesia (2023)

Opioid use disorder (OUD) is a major contributor to drug-related deaths worldwide. Opioid use cessation causes severe withdrawal symptoms, including prominent hyperalgesia – a contributor to the negative reinforcement of drug taking. Effective pain control is an underappreciated aspect of managing opioid withdrawal, and its absence presents a significant barrier to successful opioid detoxification. Exploring analgesic interventions for withdrawal-induced hyperalgesia may reveal novel OUD therapies. This thesis describes a model of hyperalgesia in both acute and extended withdrawal in morphine-dependent animals and the effect of two clinical candidate analgesic drugs on withdrawal-induced hyperalgesia. l-Tetrahydropalmatine (l-THP) is a tetrahydroprotoberberine compound and active ingredient of a botanical formulation used in Vietnam for OUD treatment with preclinical efficacy in neuropathic pain models. Z944 is a selective T-type calcium channel antagonist undergoing clinical trials as an anticonvulsive and analgesic. To establish drug dependence modelling intermittent access during abuse scenarios, morphine (15 mg/kg, i.p.) was given once a day, 5 days/week and Von Frey tests were conducted 2-3 times a week ~23 h after morphine injection. Animals subjected to three weeks of morphine treatment experienced a ~30% reduction in pain tolerance. To model hyperalgesia during detoxification, animals entered abstinence after 3 weeks of morphine treatment and with Von Frey testing showing that hyperalgesia was persistent for 14 days before spontaneous recovery. Both l-THP (5 or 7.5 mg/kg, p.o.) and Z944 (10 mg/kg, p.o.) were effective at attenuating hyperalgesia during acute withdrawal. Seven-day treatment with l-THP (5 mg/kg) or Z944 (10 mg/kg) in morphine-dependent animals undergoing extended withdrawal resulted in a significant increase in paw retraction thresholds compared to controls and this effect persisted after the completion of treatment. Importantly, the improvement in pain tolerance remained after treatment completion, hastening pain tolerance recovery to baseline by 61% and 80% (l-THP and Z944, respectively). Neither candidate drug influenced mechanical sensitivity in morphine-naïve animals. Overall, these findings support the hypothesis that pain management during detoxification is necessary for improved treatment outcomes. l-THP and Z944, therefore, may be a valuable addition to the currently limited arsenal of opioid detoxification treatments.

View record

Contribution of P/Q-type voltage-gated calcium channels to synaptic signaling in CA1 neurons of wildtype and familial hemiplegic migraine type-1 mice (2017)

P/Q-type voltage-gated calcium channels are essential for Ca2+ influx and neurotransmitter release in hippocampal synaptic transmission. Through alternative splicing, the exclusion or inclusion of the NP splice variant determines the classification of the P-type or Q-type channels, respectively, which differ in their sensitivity to the peptide toxin ω-Agatoxin IVA (Aga-IVA). Familial hemiplegic migraine type-1 (FHM-1) is an autosomal dominant subtype of migraine caused by gain-of-function missense mutations in the CaV2.1 subunit of P/Q-type channels. The S218L FHM-1 mutation is associated with a particularly severe clinical syndrome which includes ataxia, generalized seizures and fatal cerebral edema, and causes a hyperpolarizing shift in channel activation resulting in an increased proportion of P/Q-type channels being open at the resting membrane potential and is predicted to increase glutamate release. Increased sensitivity of Aga-IVA has been observed in synaptic signaling in CA1 hippocampal neurons of a S218L FHM-1 mouse model although the underlying mechanism is not known. Here, performing subunit and splice-variant specific quantitative real-time PCR on mouse hippocampal regions, I demonstrate that CaV channel subunits and P/Q-type splice variants are not differentially expressed between WT and S218L mice. Using whole-cell patch-clamp electrophysiology on CA1 neurons in mouse brain slices, I further show that the contribution of P/Q-, N- and R-type channels to excitatory miniature release in WT and S218L mice is highly variable. Examining the contribution of P/Q-type channels to evoked release, I show that P/Q-type channels are an important contributor towards the rate of excitatory spontaneous action potential evoked release in WT neurons. Further, that WT CA1 neurons exhibit a large unitary EPSC response evoked by paired-pulse stimulation and was reduced when P/Q-type channels were blocked. In contrast, EPSC amplitude in S218L neurons tended to be smaller compared to EPSC amplitudes from WT although this effect was not consistent. Together, these data suggest that in CA1 neurons P/Q-type channels are predominant in evoked synaptic transmission in WT neurons and that the S218L mutation appears to cause decreased action potential evoked Ca2+ influx. Further investigation is required to determine whether other VGCCs act to compensate evoked release in S218L neurons.

View record

Characterization of the +SSTR and ?SSTR splice variants of the Cav2.1 P/Q-type voltage-gated calcium channel (2015)

Cav2.1 P/Q-type voltage-gated calcium channels are essential for neurotransmission in many regions of the mammalian central nervous system (CNS). Alternative splicing generates functional diversity between Cav2.1 splice isoforms and is thought to be a mechanism by which fine-tuning and complexity of Cav2.1-mediated activities occur. The Cav2.1 +SSTR splice variant, located in the S3-S4 linker of domain III, has been identified in rodent brain although its effects on the biophysical and pharmacological properties of Cav2.1 have not been previously studied. Here, by performing splice variant-specific quantitative real-time PCR on selected regions of the rat CNS I demonstrate that +SSTR variant channels are differentially expressed spatially with predominant expression in the brainstem, reticular thalamus and spinal cord. Using whole-cell patch-clamp electrophysiology performed on transfected HEK 293 cells I have shown that compared to ΔSSTR channels, +SSTR variants exhibit faster activation kinetics and a hyperpolarizing shift in the voltage-dependence of activation and inactivation. Additionally, the +SSTR and ΔSSTR variants respond differently to increasing durations of action potential waveforms (APWs) with the charge transference through +SSTR channels being significantly less sensitive to APW broadening than ΔSSTR channels. Together, these data suggest that the unique biophysical properties of the Cav2.1 splice variants contribute to distinct roles in CNS synaptic physiology by relaying different types of action potential-encoding synaptic information. Lastly, I examined whether the +SSTR variant affected the sensitivity of Cav2.1 to the gating modifier peptide toxin ω-Agatoxin-IVA. Using whole-cell patch-clamp electrophysiology I found that the effects of ω-Agatoxin-IVA on current block did not significantly differ between the +SSTR and ΔSSTR splice variants suggesting that SSTR insertion does not affect the binding of ω-Agatoxin-IVA to Cav2.1 channels. The differential expression of Cav2.1 splice variants and their unique channel properties provides insight into the mechanisms by which complexity of P/Q-type calcium channel-mediated signaling contributes to CNS physiology.

View record


If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.


Sign up for an information session to connect with students, advisors and faculty from across UBC and gain application advice and insight.