Sanja Miskovic

Assistant Professor

Research Classification

Research Interests

Mineral Processing
multiphase systems
Production and Process Optimization
Optimization, Control and Operations Research
Prefeasibility and Pilot Scale
R&D and Innovation
Technological Innovations
Sensors and Devices
Computational Fluid Dynamics
Critical Elements Extraction
Embedded Sensors
Experimental Fluid Dynamics
High performance computing
IIoT
Industrial Big Data
Minerals Processing
Multiphase Flows

Relevant Degree Programs

Affiliations to Research Centres, Institutes & Clusters

 
 

Research Methodology

High-Speed Radioactive Particle Tracking
High-Performance Computing Cluster
GPU Cluster
Private Cloud
Automated Stirred Tank Reactor
AR Headset
Light Field Camera
High Speed Camera
Reactor Diagnostics
Microreactor Fabrication and Testing
Microfluidics System

Recruitment

Master's students
Doctoral students
Postdoctoral Fellows
Any time / year round
I support public scholarship, e.g. through the Public Scholars Initiative, and am available to supervise students and Postdocs interested in collaborating with external partners as part of their research.
I support experiential learning experiences, such as internships and work placements, for my graduate students and Postdocs.
I am open to hosting Visiting International Research Students (non-degree, up to 12 months).
I am interested in hiring Co-op students for research placements.

Complete these steps before you reach out to a faculty member!

Check requirements
  • Familiarize yourself with program requirements. You want to learn as much as possible from the information available to you before you reach out to a faculty member. Be sure to visit the graduate degree program listing and program-specific websites.
  • Check whether the program requires you to seek commitment from a supervisor prior to submitting an application. For some programs this is an essential step while others match successful applicants with faculty members within the first year of study. This is either indicated in the program profile under "Admission Information & Requirements" - "Prepare Application" - "Supervision" or on the program website.
Focus your search
  • Identify specific faculty members who are conducting research in your specific area of interest.
  • Establish that your research interests align with the faculty member’s research interests.
    • Read up on the faculty members in the program and the research being conducted in the department.
    • Familiarize yourself with their work, read their recent publications and past theses/dissertations that they supervised. Be certain that their research is indeed what you are hoping to study.
Make a good impression
  • Compose an error-free and grammatically correct email addressed to your specifically targeted faculty member, and remember to use their correct titles.
    • Do not send non-specific, mass emails to everyone in the department hoping for a match.
    • Address the faculty members by name. Your contact should be genuine rather than generic.
  • Include a brief outline of your academic background, why you are interested in working with the faculty member, and what experience you could bring to the department. The supervision enquiry form guides you with targeted questions. Ensure to craft compelling answers to these questions.
  • Highlight your achievements and why you are a top student. Faculty members receive dozens of requests from prospective students and you may have less than 30 seconds to pique someone’s interest.
  • Demonstrate that you are familiar with their research:
    • Convey the specific ways you are a good fit for the program.
    • Convey the specific ways the program/lab/faculty member is a good fit for the research you are interested in/already conducting.
  • Be enthusiastic, but don’t overdo it.
Attend an information session

G+PS regularly provides virtual sessions that focus on admission requirements and procedures and tips how to improve your application.

 

Graduate Student Supervision

Master's Student Supervision (2010 - 2020)
Exploring high pressure slurry ablation as a mineral processing tecnology (2020)

No abstract available.

Process optimization of jet mills for metallurgical powder production (2019)

The jet mill operates on the principle of collisions between particles to grind ultrafine powder material without the introduction of heat or any other external force and is capable of particle size reduction from about 100 microns down to 250 nm. The optimization process depends on parameters such as feed rate, grinding air pressure, physical characteristics of the solids (density, hardness, abrasiveness, or tenacity), physical characteristics of the mill shell liner, as well as feed and product particle size distribution (PSD).This research studied the optimization of the jet mill grinding process of ultrafine metallurgical powders in a small-scale 4” jet mill. The research was aimed to understand the effects of feed rate, compartment pressure, and feed particle size distribution on overall mill efficiency and iron entrainment using a stainless-steel shell. In addition, the effect of a polymer-based shell coating on milling efficiency, shell abrasion rate, and iron contamination reduction was assessed. The main variables affecting grinding such as feed rate, grinding air pressure, and feed size were investigated. Optimal operating conditions for running the lab scale jet mill are at the pressure range of 70 to 80 psi, with a feed rate of 3 to 5 kg/hr. At high grinding air pressures, the jet mill produces a small particle size, but high pressure requires more gaseous fluid which makes the process less efficient by consuming more energy.It is concluded that density and hardness seem to have a significant effect on the product fineness. Hard materials such as TaC, WC, and WTiTaC resulted in a finer product size than soft materials like TiC. High grinding air pressure has a greater effect on harder materials than on softer materials in achieving the fine product size. It is understood that jet milling can be more effective than ball milling if the optimum parameters are followed, as recommended in the study; such as feed rate, pressure, feed size, and the liner used in producing the metallurgical powders TiC, TaC, WC, or a combination of any of these.

View record

Publications

 
 

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.

 
 

Follow these steps to apply to UBC Graduate School!