Anthony Herdman

Associate Professor

Research Classification

Auditory System
Visual System
Audiovisual, Visual, Audio and Written Communications
Language and Cognitive Processes

Research Interests

Neuroimaging Methods (EEG/MEG)
Central auditory processing
Auditory and visual perecptions related to reading acquisition (1st and 2nd languages)
Brain computer interface

Relevant Degree Programs


Research Methodology

Electroencephalography (EEG)
Magnetoencephalography (MEG)


Complete these steps before you reach out to a faculty member!

Check requirements
  • Familiarize yourself with program requirements. You want to learn as much as possible from the information available to you before you reach out to a faculty member. Be sure to visit the graduate degree program listing and program-specific websites.
  • Check whether the program requires you to seek commitment from a supervisor prior to submitting an application. For some programs this is an essential step while others match successful applicants with faculty members within the first year of study. This is either indicated in the program profile under "Requirements" or on the program website.
Focus your search
  • Identify specific faculty members who are conducting research in your specific area of interest.
  • Establish that your research interests align with the faculty member’s research interests.
    • Read up on the faculty members in the program and the research being conducted in the department.
    • Familiarize yourself with their work, read their recent publications and past theses/dissertations that they supervised. Be certain that their research is indeed what you are hoping to study.
Make a good impression
  • Compose an error-free and grammatically correct email addressed to your specifically targeted faculty member, and remember to use their correct titles.
    • Do not send non-specific, mass emails to everyone in the department hoping for a match.
    • Address the faculty members by name. Your contact should be genuine rather than generic.
  • Include a brief outline of your academic background, why you are interested in working with the faculty member, and what experience you could bring to the department. The supervision enquiry form guides you with targeted questions. Ensure to craft compelling answers to these questions.
  • Highlight your achievements and why you are a top student. Faculty members receive dozens of requests from prospective students and you may have less than 30 seconds to peek someone’s interest.
  • Demonstrate that you are familiar with their research:
    • Convey the specific ways you are a good fit for the program.
    • Convey the specific ways the program/lab/faculty member is a good fit for the research you are interested in/already conducting.
  • Be enthusiastic, but don’t overdo it.
Attend an information session

G+PS regularly provides virtual sessions that focus on admission requirements and procedures and tips how to improve your application.


Master's students
Doctoral students
Postdoctoral Fellows
I support public scholarship, e.g. through the Public Scholars Initiative, and am available to supervise students and Postdocs interested in collaborating with external partners as part of their research.
I support experiential learning experiences, such as internships and work placements, for my graduate students and Postdocs.
I am open to hosting Visiting International Research Students (non-degree, up to 12 months).
I am interested in hiring Co-op students for research placements.

Graduate Student Supervision

Master's Student Supervision (2010-2017)
Cortical auditory evoked potentials to estimate gap-detection thresholds in adults (2016)

Temporal resolution is the ability of the auditory system to detect small changes over time and is an important component for the detection and decoding of speech by the central auditory nervous system. Temporal resolution is most often measured by asking a person to detect small gaps between sounds, known as behavioural gap-detection tests. However, certain populations may be unable or unwilling to respond reliably due to perceptual or cognitive deficits, or in medico-legal compensation cases. There are limitations to behavioural gap-detection measures because they cannot separate cognitive from perceptual deficits. The present study utilized electrophysiological gap-detection measures as a means of objectively estimating behavioural gap-detection thresholds. Cortical auditory evoked potentials (CAEPs) are neural responses to changes in sound, duration, and frequency that can be measured from the scalp. The specific aim of this study was to collect adult normative data for CAEP gap-detection thresholds to examine if CAEPs could accurately estimate behavioural gap-detection thresholds. Gap-evoked CAEPs could be recorded in participants who were awake and passively listening and could estimate temporal resolution without the need for a participant’s cooperation or attention. The results showed that there was a significant N1-P2 response to gaps at ≥ 4 ms, with 85% of participants having a response to a 10 ms gap. Additionally, the electrophysiological mean gap-detection threshold was within 1 ms of behavioral mean gap-detection threshold. This demonstrated that gap-evoked CAEPs can accurately estimate behavioural gap-detection thresholds in a normal hearing adult population.

View record

Behavioural measures of interference and facilitation in an audiovisual colour-word Stroop matching task (2015)

Previous audiovisual Stroop studies used spoken colour-words mainly as ignored distractors when performing the visual Stroop task. Previous matching Stroop studies in the visual domain provided opposing views regarding whether interference effects resulted from conflicting semantic representations or conflicting responses. This study’s main objective was to explore how a written word distractor affects audiovisual matching of a spoken colour-word and font colour. I presented colour-words written in congruent or incongruent font colours simultaneously with spoken colour-words. Participants pressed buttons to indicate whether the spoken word and font colour were “same” or “different”, while ignoring written word meaning. I recorded response times and accuracy to measure interference and facilitation effects between experimental and control conditions. I hypothesised that incongruent written words (e.g., red) would interfere with “same” responses (e.g., font colour = blue, spoken word = /blue/) but facilitate “different” responses (e.g., font colour = green, spoken word = /blue/); and that congruent written words (e.g., red) would facilitate “same” responses (e.g., font colour = red, spoken word = /red/) but interfere with “different” responses (e.g., font colour = red, spoken word = /blue/, or font colour = blue, spoken word = /red/). The results showed large interference effects but no facilitation effects on audiovisual judgements. While incongruent written words interfered with “same” responses, congruent written words interfered with “different” responses. The largest interference effect occurred when the written word was incongruent with both task-relevant dimensions, while smaller effects occurred when the written word was congruent with either task-relevant dimension. Consistent with previous Stroop findings, my audiovisual matching task showed that in the case of cross-modal colour judgements, written word meaning predominantly interferes with but does not facilitate performance. The pattern of results showed that a conflict between the outcome of the relevant matching task and the outcomes of two mistakenly performed matching tasks involving the written word produced interference effects, rather than a conflict among the semantic representations activated by the three stimulus dimensions.

View record

An electrophysiological investigation of auditory temporal processing (2013)

No abstract available.


If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.