Jill Zwicker

Professor

Research Interests

Brain development
developmental coordination disorder
Infant / Child Development
Learning Disorders in Children
Motor System
neuroplasticity
Prematurity
rehabilitation

Relevant Thesis-Based Degree Programs

Affiliations to Research Centres, Institutes & Clusters

 
 

Recruitment

Master's students
Doctoral students
Postdoctoral Fellows
Any time / year round

Complete these steps before you reach out to a faculty member!

Check requirements
  • Familiarize yourself with program requirements. You want to learn as much as possible from the information available to you before you reach out to a faculty member. Be sure to visit the graduate degree program listing and program-specific websites.
  • Check whether the program requires you to seek commitment from a supervisor prior to submitting an application. For some programs this is an essential step while others match successful applicants with faculty members within the first year of study. This is either indicated in the program profile under "Admission Information & Requirements" - "Prepare Application" - "Supervision" or on the program website.
Focus your search
  • Identify specific faculty members who are conducting research in your specific area of interest.
  • Establish that your research interests align with the faculty member’s research interests.
    • Read up on the faculty members in the program and the research being conducted in the department.
    • Familiarize yourself with their work, read their recent publications and past theses/dissertations that they supervised. Be certain that their research is indeed what you are hoping to study.
Make a good impression
  • Compose an error-free and grammatically correct email addressed to your specifically targeted faculty member, and remember to use their correct titles.
    • Do not send non-specific, mass emails to everyone in the department hoping for a match.
    • Address the faculty members by name. Your contact should be genuine rather than generic.
  • Include a brief outline of your academic background, why you are interested in working with the faculty member, and what experience you could bring to the department. The supervision enquiry form guides you with targeted questions. Ensure to craft compelling answers to these questions.
  • Highlight your achievements and why you are a top student. Faculty members receive dozens of requests from prospective students and you may have less than 30 seconds to pique someone’s interest.
  • Demonstrate that you are familiar with their research:
    • Convey the specific ways you are a good fit for the program.
    • Convey the specific ways the program/lab/faculty member is a good fit for the research you are interested in/already conducting.
  • Be enthusiastic, but don’t overdo it.
Attend an information session

G+PS regularly provides virtual sessions that focus on admission requirements and procedures and tips how to improve your application.

 

ADVICE AND INSIGHTS FROM UBC FACULTY ON REACHING OUT TO SUPERVISORS

These videos contain some general advice from faculty across UBC on finding and reaching out to a potential thesis supervisor.

Great Supervisor Week Mentions

Each year graduate students are encouraged to give kudos to their supervisors through social media and our website as part of #GreatSupervisorWeek. Below are students who mentioned this supervisor since the initiative was started in 2017.

 

We are so privileged to have a #GreatSupervisor who is knowledgeable, patient and a great clinician-scientist. Not only is @jillzwicker our mentor in research, but also incredibly supportive outside of the lab. From all of us at Zwicker Lab. #SupervisorAppreciationWeek @ubcgss

 

Graduate Student Supervision

Doctoral Student Supervision

Dissertations completed in 2010 or later are listed below. Please note that there is a 6-12 month delay to add the latest dissertations.

Cognitive Orientation to Occupational Performance: effect on brain structure/function and motor outcomes in children with developmental coordination disorder (2021)

Children with developmental coordination disorder (DCD) have difficulty learning motor skills, which can affect their participation in activities of daily living and psychosocial well-being. Over 50% of children with DCD also have attention deficit hyperactivity disorder (ADHD), which further exacerbates their motor function and quality of life. Cognitive Orientation to Occupational Performance (CO-OP), a rehabilitation approach developed for children with DCD, uses problem-solving strategies to help children learn motor skills they wish to achieve. While this approach has been effective for children with DCD, few studies have examined its effectiveness for children with co-occurring ADHD. Further, the underlying mechanisms of this intervention are unknown. In this randomized waitlist-controlled trial (ClinicalTrials.gov ID: NCT02597751), I used MRI and motor outcome measures to determine whether CO-OP intervention: (1) was effective in improving motor goals in children with DCD +/- ADHD; (2) induced changes in functional connectivity of the brain; and (3) promoted positive neuroplastic changes in white matter microstructure. Thirty-seven children with DCD and 41 children with DCD+ADHD, aged 8-12 years old, were randomized to treatment or waitlist groups at their first MRI. The treatment group began the intervention after their MRI scan and pre-assessment, and returned for a post-treatment assessment/scan at 3 months, and a follow-up scan at 6 months; the waitlist group waited 3 months before their second MRI, received intervention, and then had a post-treatment assessment and MRI scan.Results showed that CO-OP is effective for children with DCD +/- ADHD, in achieving functional motor goals. Neuroimaging results showed improved functional connectivity within the default mode network (DMN) as well as improved microstructural properties in the white matter underlying the DMN in children with DCD only. However, there was a lack of transfer to other motor skills and brain changes in children with DCD+ADHD.Given the role of the DMN in self-regulation, emotion regulation, and attention regulation and in accordance with cognitive models of motor learning, I suggest that these cognitive processes may underlie motor skills improvement after CO-OP in children with DCD. Modifications to the CO-OP protocol may be required to induce similar brain changes in children with DCD+ADHD.

View record

From mice to children: investigating involvement of the cerebellum in developmental coordination disorder and cerebellar changes with rehabilitation (2021)

The full abstract for this thesis is available in the body of the thesis, and will be available when the embargo expires.

View record

Master's Student Supervision

Theses completed in 2010 or later are listed below. Please note that there is a 6-12 month delay to add the latest theses.

Investigating grey matter volume in children with developmental coordination disorder before and after rehabilitation intervention (2021)

Developmental Coordination Disorder (DCD) is neurodevelopmental disorder that affects a child's ability to learn and perform motor skills which significantly interferes with their activities of daily living. Currently only one study has identified volume-based brain differences in children with DCD compared to typically developing (TD) children. Furthermore, no study has yet determined if occupational therapy intervention induces a change in grey matter volume in this population. The objectives for this study were to: (1) compare grey matter volume in children with DCD and TD children; (2) examine the relationship of grey matter volume to motor function and attentional performance; and (3) examine neuroplastic changes in grey matter volume in children with DCD following Cognitive Orientation to Occupational Performance intervention. Objectives 1 and 2 were addressed using 30 DCD and 12 TD MRI scans for cross-sectional voxel-based morphometry with a one-way Analysis of Variance (ANOVA) design. Objective 3 was addressed using 20 MRI scans for pre-post longitudinal voxel-based morphometry with a Repeated Measures ANOVA design. Regression analyses were used to examine the relationship between grey matter volume, motor function, and attentional performance. The baseline results revealed that children with DCD had greater grey matter volume in the left superior frontal gyrus (working memory). Poorer motor function was associated with greater grey matter volume in the right middle frontal gyrus, left frontal pole, and superior frontal gyrus. Greater grey matter volume in parietal regions (left precuneus, left superior parietal lobe) was associated with poorer attentional performance. After intervention, grey matter volume decreased in right-sided regions associated with self-regulation (posterior cingulate gyrus), voluntary thinking, cognitive and motor connections (middle cingulate) and executive functioning (superior frontal gyrus). This study suggests that children with DCD may have altered brain development and that CO-OP intervention may facilitate brain maturation in targeted regions.

View record

Navigating the healthcare and school systems when your child has developmental coordination disorder (2021)

The full abstract for this thesis is available in the body of the thesis, and will be available when the embargo expires.

View record

Functional connectivity in children with Developmental Coordination Disorder: an exploratory study (2019)

Developmental Coordination Disorder (DCD) is a neurodevelopmental disorder that affects a child’s ability to learn motor skills and participate in self-care, educational, and leisure activities. The cause of DCD is unknown, but evidence suggests that children with DCD have atypical brain structure and function. Resting-state MRI assesses functional connectivity by identifying brain regions that have correlated activation during rest. As only a few studies have examined functional connectivity in this population, our objective was to compare whole-brain resting-state functional connectivity of children with DCD and typically-developing children, and examine the correlation of functional connectivity with behavioural measures of motor function and ADHD symptoms. Children 8-12 years old were classified as DCD if they scored ≤16th percentile on the Movement Assessment Battery for Children - 2nd edition (MABC-2) and scored in the suspected or indicative range on the DCD Questionnaire (N=35). The control group included children with a score ≥25th percentile on the MABC-2 (N=23). Children were excluded if they were born preterm (
View record

Characterizing the neural correlates of children with developmental coordination disorder using diffusion tensor imaging (2017)

Developmental coordination disorder (DCD) is a neurodevelopmental disorder of unknown etiology characterized by poor motor coordination and difficulty learning motor skills. Recent research has shown brain differences in children with DCD compared to typically-developing children. Diffusion Tensor Imaging (DTI) is a neuroimaging technique used to identify diffusion properties of white matter of the brain. Only a handful of studies have started to elucidate the white matter pathways that are implicated in children with DCD. These studies used tractography to look at a priori white matter pathways. The objective of this thesis is to be the first to apply a DTI method called tract-based spatial statistics (TBSS), a user independent analysis of the whole brain white matter to investigate the neural correlates of children with and without DCD. We hypothesized that the white matter differences would be widespread and implicate white matter pathways such as the: corticospinal motor tract (CST); sensorimotor pathways of the posterior thalamic radiation (PTR); corpus callosum; and cerebellar pathways (CP). To achieve our research goals, DTI data were collected from 61 children between 8-12 years of age (31 DCD; 30 TD) who had an MRI scan at a mean age of 10.02 years. Voxel-wise statistical analysis of diffusion metrics such as fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) was conducted using TBSS. A two-group comparison design matrix with age and attention as covariates was used. Data were corrected for multiple comparisons across space and statistical significance was set at p
View record

Publications

 
 

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.

 
 

Explore our wide range of course-based and research-based program options!