Christopher Loewen

Professor

Research Interests

Membranes and Organelles
Lipid Signalling
Lipid Traffic
Membrane Contact Sites
Genetic Networks
Systems Biology
Super Resolution Microscopy
Cell polarity
Endoplasmic Reticulum
Golgi
Membrane Diffusion Barriers
Cell Biology
Autism
Amyotrophic Lateral Sclerosis (ALS)
Cancer Cell Metabolism

Relevant Degree Programs

 

Recruitment

Complete these steps before you reach out to a faculty member!

Check requirements
  • Familiarize yourself with program requirements. You want to learn as much as possible from the information available to you before you reach out to a faculty member. Be sure to visit the graduate degree program listing and program-specific websites.
  • Check whether the program requires you to seek commitment from a supervisor prior to submitting an application. For some programs this is an essential step while others match successful applicants with faculty members within the first year of study. This is either indicated in the program profile under "Requirements" or on the program website.
Focus your search
  • Identify specific faculty members who are conducting research in your specific area of interest.
  • Establish that your research interests align with the faculty member’s research interests.
    • Read up on the faculty members in the program and the research being conducted in the department.
    • Familiarize yourself with their work, read their recent publications and past theses/dissertations that they supervised. Be certain that their research is indeed what you are hoping to study.
Make a good impression
  • Compose an error-free and grammatically correct email addressed to your specifically targeted faculty member, and remember to use their correct titles.
    • Do not send non-specific, mass emails to everyone in the department hoping for a match.
    • Address the faculty members by name. Your contact should be genuine rather than generic.
  • Include a brief outline of your academic background, why you are interested in working with the faculty member, and what experience you could bring to the department. The supervision enquiry form guides you with targeted questions. Ensure to craft compelling answers to these questions.
  • Highlight your achievements and why you are a top student. Faculty members receive dozens of requests from prospective students and you may have less than 30 seconds to peek someone’s interest.
  • Demonstrate that you are familiar with their research:
    • Convey the specific ways you are a good fit for the program.
    • Convey the specific ways the program/lab/faculty member is a good fit for the research you are interested in/already conducting.
  • Be enthusiastic, but don’t overdo it.
Attend an information session

G+PS regularly provides virtual sessions that focus on admission requirements and procedures and tips how to improve your application.

 

Master's students
Doctoral students
Any time / year round

We currently have projects in the areas of genetic networks, cell signalling, membrane contact sites, cell polarity, cancer metabolism and autism. We use multiple model systems to study these topics including budding yeast for genetic network analysis, model human cell lines for cell signalling and microscopy, and knockout mouse genetic models for in vivo functional analysis.

Graduate Student Supervision

Doctoral Student Supervision (Jan 2008 - May 2019)
Regulation of lipin phosphorylation and lipid homeostasis by glycogen synthase kinase 3 (2019)

No abstract available.

Endoplasmic reticulum membrane contact sites : roles in phospholipid synthesis and cell polarity (2014)

Membrane contact sites between the endoplasmic reticulum (ER) and other organelles are present in all eukaryotic cells. Their roles in calcium signaling and transport between the ER and the plasma membrane (PM) or the ER and mitochondria are quite well understood, but the molecular mechanisms underlying their roles in lipid synthesis and transport remains unknown. In order to identify the importance of organelle-ER contact sites, I used Saccharomyces cerevisiae - a model organism that has proven to be a particularly informative for studying lipid-related cellular processes. Previously, we found a role for an ER anchor protein, Scs2, being important for PM-ER contact sites. Further, SCS2 interacts genetically with ICE2, an ER gene with unknown function. In Chapter 2, I investigated a role for PM–ER contact sites in regulating phosphatidylcholine (PC) synthesis and I found that Δscs2Δice2 cells are choline auxotrophs and PM–ER contacts are required for PC synthesis. Osh2 and Osh3, the oxysterol-binding protein homologues in yeast, rescued the choline auxotrophy phenotype of Δscs2Δice2 cells but did not restore pmaER, indicating that they may function with Opi3 in PC synthesis. In search for regulators of pmaER, we identified the phosphatidic acid phosphohydrolase Pah1 that seems to be involved in establishing pmaER, independent of its enzymatic activity. Finally, we proposed that PE to PC synthesis by Opi3 happens “in trans” at PM-ER contacts. In Chapter 3, I aimed to discover novel genes involved in PE synthesis/traffic from ER to mitochondria. By doing a genome-wide screen for CHO2, we identified genetic interactions between CHO2 and Emc proteins indicating that Emc proteins are important for PE metabolism and we proposed that Emc facilitates PS transfer from the ER to mitochondria for PE synthesis. In Chapter 4, I investigated for roles of SCS2 in polarized growth. I found a physiologically important function of the ER diffusion barrier, which is to restrict diffusion of the spindle from mother to bud until M phase. Scs2 interacts directly with the spindle capture protein Num1 and it prevents Num1 from diffusing from the mother into the bud during S and G2 phases.

View record

Lipids as pH biosensors (2014)

The full abstract for this thesis is available in the body of the thesis, and will be available when the embargo expires.

View record

The endoplasmic reticulum diffusion barrier and inter-organelle contact sites (2013)

Polarization of cellular membranes into domains is an important mechanism tocompartmentalize cellular activities within the membrane and establish cell polarity.Recent studies have uncovered that the endoplasmic reticulum (ER) is polarized bydiffusion barriers, which in neurons controls glutamate signaling in dendritic spines, butthe molecular identity of these diffusion barriers is unknown. In Chapter 2 we show thata direct interaction between integral ER protein Scs2 and septin Shs1 creates the ERdiffusion barrier in yeast. We uncovered a new ER-associated polarisome subunit,Epo1, which is required for the tethering of ER to septins. The human homologue ofScs2, VAP-B, also interacts with Shs1 in yeast indicating that the tether may beconserved. As mutations in VAP-B cause amyotrophic lateral sclerosis, loss of ERpolarization in dendritic spines is a potential mechanism underlying motorneurondisease.Synthesis of phospholipids, sterols and sphingolipids is thought to occur atcontact sites between the ER and other organelles because many lipid synthesizingenzymes are enriched at contact sites. In only a few cases have the enzymes beenlocalized to contacts in vivo and in no instances have the contacts been demonstratedto be required for enzyme function. In Chapter 3 we show that plasma membrane (PM) -endoplasmic reticulum (ER) contact sites in yeast are required for phosphatidylcholinesynthesis and regulate the activity of a key enzyme, Opi3, whose activity requires a lipidbinding protein, Osh3. Thus, membrane contact sites provide a structural mechanism toregulate lipid synthesis.

View record

Master's Student Supervision (2010 - 2018)
PI4P pH-biosensing regulates Osh1-mediated lipid counter-transport (2018)

The full abstract for this thesis is available in the body of the thesis, and will be available when the embargo expires.

View record

 
 

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.