Navid Shahnaz

Associate Professor

Relevant Degree Programs

 

Graduate Student Supervision

Master's Student Supervision (2010-2017)
Effects of middle ear pressure compensation on evoked otoacoustic emissions and power absorbance in adults (2017)

This study investigated the impact of positive and negative middle ear pressure (MEP) on evoked otoacoustic emissions (EOAEs) both distortion-product OAEs (1.5 to 8 kHz) and transient evoked OAEs (1 to 5 kHz), as well as wideband acoustic immittance measures of power absorbance (PA) in a normal-hearing young adult population between the ages of 18 and 35. The effectiveness was evaluated, of testing at ambient compared to a compensated pressure level corresponding to participants’ tympanic peak pressure. Outcome measures were analyzed considering factors of gender, ethnicity, frequency, and MEP magnitude. For each participant, testing was conducted at a natural state MEP and at a MEP level induced by either the Toynbee or Valsalva maneuver. Titan Suite by Interacoustics was used to collect all measures and is the only commercially available system for assessing EOAEs at a compensated pressure level. One-hundred and four participants (67 female and 37 male, providing 208 ears) were recruited for testing. EOAE absolute amplitude and PA varied significantly as a function of test frequency and across test pressure conditions. Significant differences in PA and EOAE measures were observed between gender and ethnic groups. Mean PA magnitude at frequencies ≤4 kHz was significantly greater testing at peak compared to the ambient pressure in the presence of MEP deviating from 0 daPa. EOAE amplitude was similar between the post-maneuver (induced MEP) condition and baseline measures when assessed at peak pressure. Frequency-dependent changes in PA magnitude with alterations in MEP and ear canal pressure were linked to frequency-dependent changes in EOAE amplitude. Results of this study suggest clinical benefit for a more accurate assessment of middle ear status and cochlear integrity for patients with abnormal MEP when EOAE are assessed at a compensated pressure level. This study provided a database of PA measures over a range of MEPs measured at both ambient and tympanic peak pressure.

View record

Wideband acoustic immittance : instrument, ethnicity, and gender specific normative data (2016)

This study investigated whether wideband acoustic immittance (WAI) values differed significantly in a normal hearing young adult population based on gender, ethnicity, and instrument. Normative data collected from this study can be utilized to create a repository of norms for clinical use as suggested by consensus among researchers in the Eriksholm Workshop. Eighty normal hearing young adults (age 18-34) were recruited from the University of British Columbia to undergo WAI testing with two hand-held devices (Otostat Mimosa Acoustics and Titan Interacoustics) and two non-portable devices (Reflwin Interacoustics and Mimosa Acoustics HearID). Approximately twenty participants were recruited from each of the male, female, Caucasian and Chinese groups. It was found that Caucasians had significantly higher mean power absorbance (PA) in the low frequencies between 630 – 1250 Hz and the Chinese had significantly higher mean PA in the high frequencies from 5000 - 6300 Hz overall collapsed across all devices. When the effect of equivalent ear canal volume (ECV) was adjusted for, mean PA for females were significantly higher than males at high frequencies between 4000 – 6300 Hz depending on the device used and at 5000 Hz across all devices. Mean PA at peak pressure were significantly higher than ambient pressure between 250 – 2000 Hz and significantly lower between 3150 – 5000 Hz collapsed across all devices tested (ReflWin and Titan), genders, trials, ears, and ethnicities. Mean PA did vary slightly across some frequencies for the Interacoustics devices but not the Mimosa Acoustics devices between trials; however, the test-retest differences were no more than those observed across various studies of a normal hearing population and much smaller than the difference between normal and pathological ears indicating good reliability. Mean PA varied across frequencies between devices, but using HearID instrument specific data didn’t greatly improve the ability to distinguish the normal group from a sample with surgically confirmed otosclerosis obtained using the HearID system at 800 and 2000 Hz. It is advised that future investigations utilize gender, ethnicity, and instrument-specific data to determine whether these factors improve the sensitivity and specificity of identifying middle ear pathologies using a larger frequency bin for analysis.

View record

Conventional and multi-frequency tympanometric norms for Caucasian and Chinese school-aged children (2012)

Objectives: The present study used tympanometric parameters to evaluate application of the current norms in Caucasian and Chinese school-aged children. The goals of this study were 1) to establish normative tympanometric data for school-aged children; 2) to determine whether the results vary significantly between Caucasian and Chinese children, male and female children, and children and adults; and 3) to compare normal paediatric tympanometric data with tympanometric data obtained from children with middle-ear pathology.Design: Tympanometry was measured in 98 subjects with normal middle-ear function with an average age of 5.8 years. There were a total of 66 participants who had abnormal middle-ear condition with a mean age of six years. Control group subjects were recruited from elementary schools in the Greater Vancouver area. Subjects with middle-ear effusion (MEE) were consisted of two groups. Those with confirmed middle-ear effusion (21 subjects) classified as “OTL confirmed” and those who recruited at elementary schools (eight subjects) were classified as “not OTL confirmed”. Statistical analysis (mixed-model ANOVA) was performed for effects of gender, ethnicity (Caucasian versus Chinese), age (child versus adult), and middle-ear condition. Conventional 226-Hz and multi-frequency tympanometry performed using GSI- Tympstar tympanometer (v. 2). . Results: Vanhuyse patterns were single peak (1B1G) at 226-Hz probe-tone frequency, but more complex patterns (e.g. 1B3G) were observed at higher probe-tone frequencies. Chinese school-aged children had lower Vea and Ytm, wider TW, and higher RF values than did Caucasian school-aged children. Diseased group tympanometric data was significantly different from normal group data. Statistical comparison of the area under receiver operating characteristic curve (AUROC) plots revealed that Ytm at 678-Hz had better test performance in distinguishing normal middle-ear status from MEE than did Ytm at other probe-tone frequencies (226-, and 1000-Hz). The results showed that Ytm from a 678-Hz probe-tone frequency, TW, and RF had the highest sensitivity, highest specificity, and statistically higher test performance in identification of MEE.Conclusions: A preliminary set of normative tympanometric data revealed significant differences between Caucasian and Chinese school-aged children and also between children and adults. Therefore, application of ethnic-specific criteria changes sensitivity or specificity of tympanometry in clinics.

View record

A novel screening protocol for the differentiation of type of hearing loss in neonatal intensive care unit (NICU) infants (2011)

Objective: The current screening protocol of the British Columbia Early Hearing Program for neonatal intensive care unit infants is unable to differentiate between conductive and sensorineural hearing losses at the time of detection. A critical need exists for developing standardized screening procedures for differentiating conductive, sensory, and neural loss in early infancy to provide an appropriate course of intervention and to avoid later consequences on health and the development of speech and language.Design: The current study examined a novel protocol for the hearing screening of neonatal intensive care unit (NICU) infants that involved the measures of 1000 Hz tympanometry, transient evoked otoacoustic emissions (TEOAE), and ipsilateral broadband middle-ear muscle reflex (MEMR) at a 1 kHz probe tone frequency. The GN Otometrics Accuscreen device was used for automated auditory brainstem response (AABR) and TEOAE screening and the GN Otometrics Otoflex diagnostic immittance meter recorded 1000 Hz tympanometry and the MEMR. A total of 90 infants (180 ears) from the NICU of the Royal University Hospital in Saskatoon, Saskatchewan was recruited, of which 78 infants (143 ears) met the inclusion criteria. The participants mean chronological age was 31.38 days. The novel protocol was examined for three components: 1) if it generated equivalent results with the current two-stage AABR hearing screening protocol for NICU infants; 2) for testing length; and 3) for challenges encountered during testing.Results: Results revealed that 70.6% of infants passed both the current AABR and novel protocols. TEOAE accounted for most of the referrals for infants who passed the current AABR screening protocol and referred on the novel protocol (70%) and for infants who referred on both protocols (83.3%). Conclusion: The novel protocol might provide more information regarding the reason for a screening referral, including the identification of middle-ear dysfunction and the detection of mild hearing impairment.

View record

Clinical application of the Interacoustics REFLWIN system wideband reflectance machine in the assessment of the eustachian tube. (2011)

Objective: Eustachian tube function remains an area of middle ear analysis in which suitable clinical tests are lacking. Eustachian tube malfunction has been linked to pathology of the middle ear such as otitis media with effusion. Wideband reflectance (WBR) is a new clinical technique which determines the ratio of sound energy that enters the middle ear to that which reflects back into the ear canal. This technique could provide information regarding Eustachian tube function that other tympanometric measures do not. Design: Measures of WBR were taken in 50 Chinese and Caucasian young adult subjects before and after performing Valsalva and Toynbee manoeuvres. Subjects were students or affiliates of the University of British Columbia. Data were analysed based on static and dynamic power absorbance measures, power absorbance tympanograms, 226 Hz tympanograms and 1000 Hz tympanograms provided by the Interacoustics REFLWIN wideband reflectance system. Baseline measurements were compared between gender and ethnicity. Similarities to measurements using other clinical WBR devices were also analysed. Finally, comparisons were made on each variable between baseline and post-manoeuvre state.Results: Baseline results were comparable with previous wideband reflectance research in this subject population. Notable differences were observed between the current study and a previous version of the same device. Differences between the current system and the Mimosa Acoustics system were minimal. For both the Valsalva and Toynbee manoeuvres significant shifts in middle ear pressure were indicated by changes in tympanometric peak pressure and power absorbance tympanogram peak pressure. However, dynamic power absorbance did not differ between baseline and either manoeuvre state. Conclusion: The current version of the Interacoustics REFLWIN system provides comparable estimates of WBR to the other major clinical system available on the market. The measures of wideband reflectance did not offer information regarding Eustachian tube function in addition to that already provided by measures of tympanometry following physical manoeuvres. However, the equivalent performance of wideband reflectance to tympanometry shows that it can be used to evaluate Eustachian tube function in the same manner as tympanometry. There is still a need to devise a clinical test to accurately distinguish between healthy and pathological Eustachian tubes.

View record

Longitudinal investigation of middle ear function using multi-frequency, multi-component tympanometry from birth to six months of age (2010)

Objectives: The specific goals of this study were: 1) To understand the mechano-acoustical properties of the normal ear canal and middle ear and its maturation as a function of age using conventional and high frequency tympanometry 2) to establish tympanometric guidelines and normative data of the normal ear canal and middle ear in infants birth to 6 months of age. Design: Thirty-one normal hearing newborns were tested longitudinally in 1-month intervals up to 6 months of age for a total of 6 visits. Tympanograms were recorded and the distributions of patterns were analyzed using the Vanhuyse model at 226 Hz, 678 Hz, and 1000 Hz. Additionally, tympanometric recordings of admittance (Ya), susceptance (Ba), and conductance (Ga) were analyzed at 226 Hz and 1000 Hz probe tones. Lastly, the variation of compensated susceptance and conductance were recorded at extended frequencies from 250-2000 Hz in 50 Hz intervals for 16 infants. Results: Results showed that 1000 Hz tympanograms were the simplest to quantify as most recordings were single-peaked. 226 Hz and 678 Hz recordings were often multi-peaked. Both positive and negative admittance and susceptance tail values increased with age for 226 Hz and 1000 Hz. However, tail values at 1000 Hz increased faster than for 226 Hz. Negative tail values were smaller compared to positive tail values which resulted in smaller compensated admittance values for the positive tails compared to negative tails across all 6 visits. Admittance magnitude decreased with age at 226 Hz as susceptance increased and conductance decreased. However, at 1000 Hz, admittance magnitude increased as susceptance remained relatively constant and conductance increase. Conclusion: Results suggest that the infant middle ear and ear canal develop towards compliance with age although is not yet a purely acoustically compliant system by 6 months of age, particularly at high frequencies. An increase in volume in the middle ear cavity, reduction of middle ear debris, and overall decrease in resistive elements may be contributing to these changes. Significant differences were observed between each visit and warrant the use of age-specific norms when applying tympanometric data to infants below 6 months of age.

View record

 

Membership Status

Member of G+PS

 

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.