Wyeth Wasserman


Research Interests

Creation of computational methods for the analysis of genome sequences (bioinformatics)
Study of cis-regulatory elements controlling gene transcription
Applied analyses of genome sequences (genomics)
Indigenous genomics

Relevant Degree Programs

Affiliations to Research Centres, Institutes & Clusters

Research Options

I am available and interested in collaborations (e.g. clusters, grants).
I am interested in and conduct interdisciplinary research.
I am interested in working with undergraduate students on research projects.

Research Methodology



Postdoctoral Fellows
Any time / year round

Gene Regulation

Amongst the most important challenges of this era of life science research is understanding the regulation of gene expression, a process that allows an incredible diversity of cells to be produced from the same genome sequence. During development and across physiological conditions, a set of proteins, called Transcription Factors (TFs), interact with the genome to control the activity of genes. The roughly ~1500 TFs in the human genome cooperate in different combinations and interact with other regulatory processes. The lab studies gene regulation via multiple lines. First, the lab creates novel algorithms and software to predict interactions between TFs and DNA. Second, the lab collaborates on the analysis of emerging types of data, to identify active regulatory regions (e.g. enhancer or promoter regions in the genome) in specific biological processes, such as the transition from stem cells into differentiated cells. Third, the lab designs compact DNA sequences, based on regulatory regions in the human genome, to direct gene expression from virus-based gene therapy vectors.

Genome Analysis

Genome Sequencing has accelerated health research, particularly disease genetics. The lab has been developing computational methods and tools to allow researchers and clinicians to identify functional consequences of genetic variations within the human genome, both in the protein coding and in the non-coding space. The latter effort is fueled by the gene regulation bioinformatics research in the lab.

Engaging with patients and clinicians both locally through BC Children’s Hospital, and through international collaborations, our genomics analyses enable the diagnosis, and in some cases treatment, of previously undiagnosed cases. As DNA sequencing technology has revolutionized the diagnosis and management of rare genetic disorders, the Wasserman lab has embarked on an endeavour to make the technology available to currently underrepresented populations, namely the indigenous populations of Canada. Learn more about the Silent Genome Project.

Join Us!

We are always looking for curious individuals with a talent in computing, genomics and gene regulation. Feel free to contact us to explore matching interests. 

Postdoctoral fellows


For the amazing silent genomes project we need a post-doc with an interest in equitable access to genome medicine. Creating resources in partnership with Canada's Indigenous communities that positively impact clinical genetics and empower choice.


We are developing new approaches based on Deep Learning.  Ideally candidates will have experience with machine learning methods, but candidates with experience across the life sciences who have demonstrated a strong commitment to developing programming skills are encouraged to apply.

Graduate students

The lab is not presently seeking graduate students. We do review applications and would consider exceptional candidates at anytime.  However, we do not currently anticipate taking on new students until 2023.  When we do take on students, most pursue their training within the UBC Bioinformatics Graduate Program.

Undergraduate students

We periodically welcome UBC Work-Learn students, coop students from across Canada, and UBC or SFU students conducting undergraduate thesis studies. 

Other positions

No other positions are currently posted. 

Notice for Potential Applicants

Our team is constantly changing. The students and post-docs in the group have historically done well, with alumni working in both industry and academia. We take pride in teamwork and maintaining a positive research environment. Opportunities are always available for exceptional students and post-docs. Computer programming skills are essential—we work in a linux environment and develop our own software (primarily in Python).

I am interested in supervising students to conduct interdisciplinary research.

Complete these steps before you reach out to a faculty member!

Check requirements
  • Familiarize yourself with program requirements. You want to learn as much as possible from the information available to you before you reach out to a faculty member. Be sure to visit the graduate degree program listing and program-specific websites.
  • Check whether the program requires you to seek commitment from a supervisor prior to submitting an application. For some programs this is an essential step while others match successful applicants with faculty members within the first year of study. This is either indicated in the program profile under "Admission Information & Requirements" - "Prepare Application" - "Supervision" or on the program website.
Focus your search
  • Identify specific faculty members who are conducting research in your specific area of interest.
  • Establish that your research interests align with the faculty member’s research interests.
    • Read up on the faculty members in the program and the research being conducted in the department.
    • Familiarize yourself with their work, read their recent publications and past theses/dissertations that they supervised. Be certain that their research is indeed what you are hoping to study.
Make a good impression
  • Compose an error-free and grammatically correct email addressed to your specifically targeted faculty member, and remember to use their correct titles.
    • Do not send non-specific, mass emails to everyone in the department hoping for a match.
    • Address the faculty members by name. Your contact should be genuine rather than generic.
  • Include a brief outline of your academic background, why you are interested in working with the faculty member, and what experience you could bring to the department. The supervision enquiry form guides you with targeted questions. Ensure to craft compelling answers to these questions.
  • Highlight your achievements and why you are a top student. Faculty members receive dozens of requests from prospective students and you may have less than 30 seconds to pique someone’s interest.
  • Demonstrate that you are familiar with their research:
    • Convey the specific ways you are a good fit for the program.
    • Convey the specific ways the program/lab/faculty member is a good fit for the research you are interested in/already conducting.
  • Be enthusiastic, but don’t overdo it.
Attend an information session

G+PS regularly provides virtual sessions that focus on admission requirements and procedures and tips how to improve your application.




If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.


Get key application advice, hear about the latest research opportunities and keep up with the latest news from UBC's graduate programs.