Steven Weijs

Assistant Professor

Research Classification

Water
Hydrological Cycle and Reservoirs
Drinking Water
Fresh Water
Information
Hydroelectricity
Ice and Snow

Research Interests

Hydrological Prediction
Hydrology
water resources management
information theory
uncertainty
experimental hydrology
sensors
mountain hydrology
droughts
floods
control of water systems

Relevant Degree Programs

 

Research Methodology

wireless sensor networks
salt dilution gauging
information theory
conceptual hydrological prediction models

Recruitment

Complete these steps before you reach out to a faculty member!

Check requirements
  • Familiarize yourself with program requirements. You want to learn as much as possible from the information available to you before you reach out to a faculty member. Be sure to visit the graduate degree program listing and program-specific websites.
  • Check whether the program requires you to seek commitment from a supervisor prior to submitting an application. For some programs this is an essential step while others match successful applicants with faculty members within the first year of study. This is either indicated in the program profile under "Requirements" or on the program website.
Focus your search
  • Identify specific faculty members who are conducting research in your specific area of interest.
  • Establish that your research interests align with the faculty member’s research interests.
    • Read up on the faculty members in the program and the research being conducted in the department.
    • Familiarize yourself with their work, read their recent publications and past theses/dissertations that they supervised. Be certain that their research is indeed what you are hoping to study.
Make a good impression
  • Compose an error-free and grammatically correct email addressed to your specifically targeted faculty member, and remember to use their correct titles.
    • Do not send non-specific, mass emails to everyone in the department hoping for a match.
    • Address the faculty members by name. Your contact should be genuine rather than generic.
  • Include a brief outline of your academic background, why you are interested in working with the faculty member, and what experience you could bring to the department. The supervision enquiry form guides you with targeted questions. Ensure to craft compelling answers to these questions.
  • Highlight your achievements and why you are a top student. Faculty members receive dozens of requests from prospective students and you may have less than 30 seconds to peek someone’s interest.
  • Demonstrate that you are familiar with their research:
    • Convey the specific ways you are a good fit for the program.
    • Convey the specific ways the program/lab/faculty member is a good fit for the research you are interested in/already conducting.
  • Be enthusiastic, but don’t overdo it.
Attend an information session

G+PS regularly provides virtual sessions that focus on admission requirements and procedures and tips how to improve your application.

 

Master's students
Doctoral students
Postdoctoral Fellows
Any time / year round

Projects regarding new measurement techniques for catchment hydrology
Projects working on uncertainty analysis / quantification for hydrological prediction
Projects on optimal monitoring network layout / optimal expermental design
Projects on applications of information theory in hydrology and water resources

I support public scholarship, e.g. through the Public Scholars Initiative, and am available to supervise students and Postdocs interested in collaborating with external partners as part of their research.
I support experiential learning experiences, such as internships and work placements, for my graduate students and Postdocs.
I am open to hosting Visiting International Research Students (non-degree, up to 12 months).

Graduate Student Supervision

Master's Student Supervision (2010 - 2018)
Probabilistic dynamic rating curves using auxiliary information (2018)

Rating curves play a vital part in hydrology for producing streamflow time-series. The derivedstreamflow is an integral component to any hydrological study and therefore requires proper quantification of not only a discharge point value, but also an uncertainty measure. Using multivariate Gaussian distributions as kernels, a probabilistic rating curve was developed from the conditional distribution as an alternative model for the standard deterministic rating curve. Auxiliary information from a run-of-river hydroelectric project, as well as the temporal variability from the gauging measurements, were used to study the possible reduction in the uncertainty of the developed rating curve. The temporal information was modeled using an exponential function that updated upon receiving new gaugings and the sluicing model was a continuously updated kernel distribution that assigned more weight to gaugings taken after a sluicing event. Four models of varying complexity were created and their performance was evaluated using information theory measures such as surprise and the Kullback-Leibler divergence measure. The results indicate that probabilistic rating curves are useful tools for modeling and evaluating the dynamic uncertainty of the curves. The uncertainty was shown to be reduced by up to 19% by including the temporal information of the gaugings and sluicing information. Auxiliary information can be beneficial to rating curve development and an argument is made for why probabilistic rating curves should become a norm in the hydrology field.

View record

Current Students & Alumni

This is a small sample of students and/or alumni that have been supervised by this researcher. It is not meant as a comprehensive list.
 
 

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.