Steven Weijs

Assistant Professor

Research Classification

Research Interests

Water
Hydrological Cycle and Reservoirs
Drinking Water
Fresh Water
Information
Hydroelectricity
Ice and Snow
control of water systems
droughts
experimental hydrology
floods
Hydrological Prediction
Hydrology
information theory
mountain hydrology
sensors
uncertainty
water resources management

Relevant Degree Programs

 
 

Research Methodology

wireless sensor networks
salt dilution gauging
information theory
conceptual hydrological prediction models

Recruitment

Master's students
Doctoral students
Postdoctoral Fellows
Any time / year round

Projects regarding new measurement techniques for catchment hydrology
Projects working on uncertainty analysis / quantification for hydrological prediction
Projects on optimal monitoring network layout / optimal expermental design
Projects on applications of information theory in hydrology and water resources

I support public scholarship, e.g. through the Public Scholars Initiative, and am available to supervise students and Postdocs interested in collaborating with external partners as part of their research.
I support experiential learning experiences, such as internships and work placements, for my graduate students and Postdocs.
I am open to hosting Visiting International Research Students (non-degree, up to 12 months).

Complete these steps before you reach out to a faculty member!

Check requirements
  • Familiarize yourself with program requirements. You want to learn as much as possible from the information available to you before you reach out to a faculty member. Be sure to visit the graduate degree program listing and program-specific websites.
  • Check whether the program requires you to seek commitment from a supervisor prior to submitting an application. For some programs this is an essential step while others match successful applicants with faculty members within the first year of study. This is either indicated in the program profile under "Admission Information & Requirements" - "Prepare Application" - "Supervision" or on the program website.
Focus your search
  • Identify specific faculty members who are conducting research in your specific area of interest.
  • Establish that your research interests align with the faculty member’s research interests.
    • Read up on the faculty members in the program and the research being conducted in the department.
    • Familiarize yourself with their work, read their recent publications and past theses/dissertations that they supervised. Be certain that their research is indeed what you are hoping to study.
Make a good impression
  • Compose an error-free and grammatically correct email addressed to your specifically targeted faculty member, and remember to use their correct titles.
    • Do not send non-specific, mass emails to everyone in the department hoping for a match.
    • Address the faculty members by name. Your contact should be genuine rather than generic.
  • Include a brief outline of your academic background, why you are interested in working with the faculty member, and what experience you could bring to the department. The supervision enquiry form guides you with targeted questions. Ensure to craft compelling answers to these questions.
  • Highlight your achievements and why you are a top student. Faculty members receive dozens of requests from prospective students and you may have less than 30 seconds to pique someone’s interest.
  • Demonstrate that you are familiar with their research:
    • Convey the specific ways you are a good fit for the program.
    • Convey the specific ways the program/lab/faculty member is a good fit for the research you are interested in/already conducting.
  • Be enthusiastic, but don’t overdo it.
Attend an information session

G+PS regularly provides virtual sessions that focus on admission requirements and procedures and tips how to improve your application.

 

Graduate Student Supervision

Master's Student Supervision (2010 - 2020)
Green Infrastructure in the City of Vancouver: Performance Monitoring of Stormwater Tree Trenches and Bioswales (2019)

Green infrastructure (GI) is an approach that aims to reduce the amount of stormwater that reaches the combined or stormwater sewer networks and protect receiving waterbodies in urban watersheds. Cities across North America and the world are devoting resources to implement different types of GI to showcase their use. As it is a new approach, the field of GI research is emerging. The main objective of this thesis is to contribute to the GI literature by assessing the water quantity and water quality performances of three green infrastructure practices constructed in 2018 by the City of Vancouver. A stormwater tree trench and two bioswales were monitored. The soil moisture levels in the structural soil stormwater tree trench and one of the bioswales were monitored to assess the drought resistance of these practices and to evaluate the salt migration. This research introduced low cost monitoring options that can simplify the monitoring of stormwater tree trenches and bioswale practices. This research concluded that structural soil stormwater tree trenches and bioswale practices are effective in treating heavy metals, suspended solids, and other pollutants harmful street pollutants. These practices are also effective tools in removing stormwater from the stormwater/sewer networks by promoting infiltration to native soils.

View record

Model Predictive Control for real-time operation of a stormwater drainage system (2019)

Stormwater drainage system operators in lowland areas use weather forecast information, tide tables, a hydraulic model and heuristic experiences to balance the water table in the region close to the desired water level setpoints. Water can be discharged using pumps and gravity outflow flap gates, or can be stored in the system if the discharge capacity is limited. In the lower mainland of British Columbia (BC), climate change projections are showing an increasing trend in high-intensity, short-duration rainfall events, and sea level is expected to rise up to 1.0 m by the end of 2100. Given the uncertainties in climate change projections, the challenge is to build more resilient stormwater drainage system whilst reducing the cost of pumping operation or other capacity expansions. Experiences in the Netherlands have shown that algorithmic control of drainage system using model predictive control (MPC) can be a way to link water and energy objectives more cohesively. To maintain water level at the desired water level setpoint, MPC calculates water levels that need to be controlled using rainfall and sea tides forecasts, and computes optimal control actions for pump stations. This thesis aims to gain operational insights into algorithmic control of urban stormwater drainage system in Richmond BC, using a simplified drainage system model. Smart control strategies serving different objectives are explored to reduce pump energy costs while avoiding flood. Furthermore, an application of bottom-up vulnerability assessment under different control strategies aiming to maximize the operational flexibilities, illuminates the vulnerabilities and adaptation capacity of the (modeled) existing stormwater drainage system to plausible scenarios of climate change induced sea level rise, heavy rainstorms, and land-use changes. This provides necessary information to water systems operators and engineers about the smart, real-time control of such a system, and finding ways to combine engineering designs with operational flexibilities for better adapting to future conditions.

View record

Probabilistic Dynamic Rating Curves using Auxiliary Information (2018)

Rating curves play a vital part in hydrology for producing streamflow time-series. The derivedstreamflow is an integral component to any hydrological study and therefore requires proper quantification of not only a discharge point value, but also an uncertainty measure. Using multivariate Gaussian distributions as kernels, a probabilistic rating curve was developed from the conditional distribution as an alternative model for the standard deterministic rating curve. Auxiliary information from a run-of-river hydroelectric project, as well as the temporal variability from the gauging measurements, were used to study the possible reduction in the uncertainty of the developed rating curve. The temporal information was modeled using an exponential function that updated upon receiving new gaugings and the sluicing model was a continuously updated kernel distribution that assigned more weight to gaugings taken after a sluicing event. Four models of varying complexity were created and their performance was evaluated using information theory measures such as surprise and the Kullback-Leibler divergence measure. The results indicate that probabilistic rating curves are useful tools for modeling and evaluating the dynamic uncertainty of the curves. The uncertainty was shown to be reduced by up to 19% by including the temporal information of the gaugings and sluicing information. Auxiliary information can be beneficial to rating curve development and an argument is made for why probabilistic rating curves should become a norm in the hydrology field.

View record

Current Students & Alumni

This is a small sample of students and/or alumni that have been supervised by this researcher. It is not meant as a comprehensive list.
 
 

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.

 
 

Discover the amazing research that is being conducted at UBC!