Darlene Weston

Associate Professor

Research Classification

Research Interests

Archeological Data Analysis
Biological Anthropology

Relevant Thesis-Based Degree Programs

Research Options

I am interested in and conduct interdisciplinary research.


Master's students
I support public scholarship, e.g. through the Public Scholars Initiative, and am available to supervise students and Postdocs interested in collaborating with external partners as part of their research.
I support experiential learning experiences, such as internships and work placements, for my graduate students and Postdocs.
I am open to hosting Visiting International Research Students (non-degree, up to 12 months).
I am interested in supervising students to conduct interdisciplinary research.

Complete these steps before you reach out to a faculty member!

Check requirements
  • Familiarize yourself with program requirements. You want to learn as much as possible from the information available to you before you reach out to a faculty member. Be sure to visit the graduate degree program listing and program-specific websites.
  • Check whether the program requires you to seek commitment from a supervisor prior to submitting an application. For some programs this is an essential step while others match successful applicants with faculty members within the first year of study. This is either indicated in the program profile under "Admission Information & Requirements" - "Prepare Application" - "Supervision" or on the program website.
Focus your search
  • Identify specific faculty members who are conducting research in your specific area of interest.
  • Establish that your research interests align with the faculty member’s research interests.
    • Read up on the faculty members in the program and the research being conducted in the department.
    • Familiarize yourself with their work, read their recent publications and past theses/dissertations that they supervised. Be certain that their research is indeed what you are hoping to study.
Make a good impression
  • Compose an error-free and grammatically correct email addressed to your specifically targeted faculty member, and remember to use their correct titles.
    • Do not send non-specific, mass emails to everyone in the department hoping for a match.
    • Address the faculty members by name. Your contact should be genuine rather than generic.
  • Include a brief outline of your academic background, why you are interested in working with the faculty member, and what experience you could bring to the department. The supervision enquiry form guides you with targeted questions. Ensure to craft compelling answers to these questions.
  • Highlight your achievements and why you are a top student. Faculty members receive dozens of requests from prospective students and you may have less than 30 seconds to pique someone’s interest.
  • Demonstrate that you are familiar with their research:
    • Convey the specific ways you are a good fit for the program.
    • Convey the specific ways the program/lab/faculty member is a good fit for the research you are interested in/already conducting.
  • Be enthusiastic, but don’t overdo it.
Attend an information session

G+PS regularly provides virtual sessions that focus on admission requirements and procedures and tips how to improve your application.



These videos contain some general advice from faculty across UBC on finding and reaching out to a potential thesis supervisor.

Graduate Student Supervision

Doctoral Student Supervision

Dissertations completed in 2010 or later are listed below. Please note that there is a 6-12 month delay to add the latest dissertations.

Using shape analysis and human variation to better predict sex in the human coxal bone (2020)

Metric methods of sex estimation are often less powerful than visual methods because linear measurements represent too may isometric measures of body size and lack sufficient allometric measures of body form (size and shape). This study uses geometric morphometrics to identify 17 landmarks that most effectively represent sex-based shape in right and left coxal bones (n = 394, f = 191, m = 203), these are: the anterior superior iliac spine; posterior superior iliac spine; posterior inferior iliac spine; iliac crest; apex of the auricular surface; greater sciatic notch; ischial spine; superior, inferior and distal points on ischial tuberosity; superior, inferior and midpoint on the symphyseal face; arcuate eminence; ischiopubic ramus; and posterosuperior and anterosuperior points on the acetabular rim. The first and second principal components (PCs) correctly predicted sex in 98.5% of cases; better than previous studies on whole coxal bone sex-based shape. Linear measurements from Langley et al. (2016) that correspond with the 17-landmarks were used to generate a reliable discriminant function (DF) equation and logistic regression model (LRM) for sex estimation. The DF equation correctly predicted sex 99.7% of the time in cross-validation, the LRM correctly predicted sex in all individuals. Both equations accounted for allometric size, isometric size, and fluctuating asymmetry to help discern sex from other variants of shape. When tested on an independent population (n = 120; f = 60/60, m = 60/60), the DF equation correctly predicted sex with 99.2% accuracy (f = 191/191, 100%, m = 202/203, 99.7%), and the LRM correctly predicted sex in all test specimens.Measurements and landmarks were further tested for use in fragmented coxal bones. The most successful DFs and LRMs accurately predicted sex between 98.7 – 99.2% for measurements representing coxal bones completeness between 50-25%. DF and LRM equations representing coxal bones no less than 25% complete predicted sex with similar accuracies (DF = 99.0%; LRM = 99.2%) and correctly assigned 100% of the test population. These equations excelled at sex estimation because the measurements account for variations in sex, size (allometry and isometry) and fluctuating asymmetry. These DF and LRM equations are recommended for forensic applications.

View record

Master's Student Supervision

Theses completed in 2010 or later are listed below. Please note that there is a 6-12 month delay to add the latest theses.

The Kulleet Bay mass grave (2018)

This bioarchaeological study was undertaken in partnership with Stz’uminus First Nation and draws on forensic and osteological methodologies for the analysis of 153,386 cremated human bones found buried together in a mass grave. Archaeological context is integrated with the bioarchaeological results to understand the various dimensions of a mass cremation grave discovered during 2004 sewer line excavations in the traditional ancient Stz’uminus village of Kulleet Bay. Analyses of the thermally altered skeletal bone indicate fleshed bodies were intensely cremated with sustained temperatures. Vertical gradation of temperature altered matrices were observed in the stratigraphic profile. Archaeological and osteological evidence point to an in situ cremation event of fleshed corpses who suffered a mass death, radiocarbon dated to 2407 cal BP. Skeletal pathologies consistent with poor health and also potentially related to disease processes are perhaps indirect evidence of the agent of mass death. No evidence of conflict or natural environmental disaster is present to support alternative causes. This mass death event correlates precisely to the transition from Locarno to Marpole Phases ca. 2400 BP. Radiocarbon dated wood samples and a lack of artifacts dating from 2400 BP to the post contact period support a period of abandonment following the cremation event, when trees re-established in this locality within the village. Corpse treatment and mortuary processes related to the grave construction highlight social dimensions of the survivors’ attitudes, who possibly viewed the dead not as enemies or ‘foe’ but as contaminated, resulting in a mortuary treatment outside the norm of traditional Coast Salish funerary practice.

View record



Membership Status

Member of G+PS
View explanation of statuses

Program Affiliations

Academic Unit(s)


If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.


Planning to do a research degree? Use our expert search to find a potential supervisor!