Prospective Graduate Students / Postdocs
This faculty member is currently not actively recruiting graduate students or Postdoctoral Fellows, but might consider co-supervision together with another faculty member.
This faculty member is currently not actively recruiting graduate students or Postdoctoral Fellows, but might consider co-supervision together with another faculty member.
Theses completed in 2010 or later are listed below. Please note that there is a 6-12 month delay to add the latest theses.
In human-computer interaction (HCI) studies, bias in the gender representation of participants can jeopardize the generalizability of findings, perpetuate bias in data driven practices, and make new technologies dangerous for underrepresented groups. Key to progress towards inclusive and equitable gender practices is diagnosing the current status of bias and identifying where it comes from. In this mixed-methods study, we interviewed 13 HCI researchers to identify the potential bias factors, defined a systematic data collection procedure for meta-analysis of participant gender data, and created a participant gender dataset from 1147 CHI papers. Our analysis provided empirical evidence for the underrepresentation of women, the invisibility of non-binary participants, deteriorating representation of women in MTurk studies, and characteristics of research topics prone to bias. Based on these findings, we make concrete suggestions for promoting inclusive community culture and equitable research practices in HCI.
View record
If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.