Xiao Liang Jin

Assistant Professor

Research Classification

Research Interests

Manufacturing Processes
Solid Mechanics
Machining Mechanics and Dynamics
Manufacturing Processes for Advanced Materials
Material Characterization
Surface Integrity
Vibration Assisted Machining

Relevant Degree Programs

Affiliations to Research Centres, Institutes & Clusters


Research Methodology

Modeling of Machining Mechanics
Modeling of Machining Dynamics
Precision Manufacturing Experiments
Surface Characterization


Master's students
Doctoral students
Postdoctoral Fellows

Surface integrity in vibration assisted machining process.
Surface texturing process.
Chip formation stability in high-speed machining process.

I support public scholarship, e.g. through the Public Scholars Initiative, and am available to supervise students and Postdocs interested in collaborating with external partners as part of their research.
I support experiential learning experiences, such as internships and work placements, for my graduate students and Postdocs.
I am open to hosting Visiting International Research Students (non-degree, up to 12 months).
I am interested in hiring Co-op students for research placements.

Complete these steps before you reach out to a faculty member!

Check requirements
  • Familiarize yourself with program requirements. You want to learn as much as possible from the information available to you before you reach out to a faculty member. Be sure to visit the graduate degree program listing and program-specific websites.
  • Check whether the program requires you to seek commitment from a supervisor prior to submitting an application. For some programs this is an essential step while others match successful applicants with faculty members within the first year of study. This is either indicated in the program profile under "Admission Information & Requirements" - "Prepare Application" - "Supervision" or on the program website.
Focus your search
  • Identify specific faculty members who are conducting research in your specific area of interest.
  • Establish that your research interests align with the faculty member’s research interests.
    • Read up on the faculty members in the program and the research being conducted in the department.
    • Familiarize yourself with their work, read their recent publications and past theses/dissertations that they supervised. Be certain that their research is indeed what you are hoping to study.
Make a good impression
  • Compose an error-free and grammatically correct email addressed to your specifically targeted faculty member, and remember to use their correct titles.
    • Do not send non-specific, mass emails to everyone in the department hoping for a match.
    • Address the faculty members by name. Your contact should be genuine rather than generic.
  • Include a brief outline of your academic background, why you are interested in working with the faculty member, and what experience you could bring to the department. The supervision enquiry form guides you with targeted questions. Ensure to craft compelling answers to these questions.
  • Highlight your achievements and why you are a top student. Faculty members receive dozens of requests from prospective students and you may have less than 30 seconds to pique someone’s interest.
  • Demonstrate that you are familiar with their research:
    • Convey the specific ways you are a good fit for the program.
    • Convey the specific ways the program/lab/faculty member is a good fit for the research you are interested in/already conducting.
  • Be enthusiastic, but don’t overdo it.
Attend an information session

G+PS regularly provides virtual sessions that focus on admission requirements and procedures and tips how to improve your application.


Graduate Student Supervision

Master's Student Supervision (2010 - 2020)
3-D finite element modeling of sequential oblique cutting of unidirectional carbon fiber reinforced polymer (2020)

Carbon fiber reinforced polymer (CFRP) composites have been widely used in aerospace, aviation, and automotive industries due to their high strength/stiffness-to-weight ratios, high temperature resistance and corrosion resistance. CFRP components are usually produced in near net-shape, and cutting operations such as drilling, slot milling, and edge trimming are required to remove excessive materials and fulfill the geometry and surface quality requirements of the final parts. Practical cutting operations are in the form of oblique and sequential cutting at the tool edge. Different from metal cutting, the material removal mechanism and surface quality are highly dependent on the fiber orientation in cutting CFRP materials. This thesis presents a 3-D finite element model of oblique cutting of unidirectional CFRP. The effects of the fiber orientation and oblique angles on the chip formation, cutting forces, and subsurface damage are simulated and analyzed. It is found that the out-of-plane force and the depth of subsurface damage increase with the oblique angle in all fiber orientation angles except 0°. To represent the nature of sequential cutting, a second cut on the machined material with existing damages and residual stresses due to previous cutting is simulated. The results show that the effect of sequential cutting on the cutting forces is the largest at 90° fiber orientation angle.Oblique cutting experiments were conducted on unidirectional CFRP. The cutting forces and chip morphology between the simulations and the experimental results were compared. The proposed FE model reveals the effect of oblique angle and sequential cutting on the mechanisms of chip formation and surface generation. The results are able to provide guidance in choosing proper cutting parameters and tool geometries to minimize the subsurface damage and potential delamination corresponding to in actual cutting operations of CFRP composites.

View record

Surface texture generation using high-feed milling with spindle speed modulation (2020)

Surface texturing is a manufacturing process to generate periodic geometric patterns on component surfaces in order to achieve certain functions, such as tribological property, adhesion, and wettability. This thesis presents a surface texturing technique using ball-end milling with high feed speed and spindle speed modulation. The ratio between the feedrate and the cutting tool radius is in the range of 0.2-0.4 when the spindle speed is a constant, and a certain amount of workpiece material remains after the cutting process to form the surface texture. A sinusoidal modulation signal is added to the spindle speed command, so the spindle speed becomes time-varying in order to generate different texture profiles based on the modulated frequency and amplitude.The cutting tool kinematics of the surface texturing process are modeled considering the tool tip run-out and deflection due to the cutting forces. Z-map method is used to simulate the geometry of the 3-D surface texture based on the tool tip trajectory. The effects of modulation parameters on tool tip trajectories and surface textures are analyzed. The relationship between the micro features of the surface texture and the process parameters are determined. Surface texturing experiments are conducted based on the proposed technique, and tribology tests are performed on the textured surfaces. It is shown that the textured surfaces present frictional anisotropy, which depends on the process conditions and the modulation parameters of the spindle speed. The proposed technique is able to achieve fast generation of various surface textures without additional instrumentation, and the final texture geometry is controllable based on the presented kinematics model.

View record


If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.


Follow these steps to apply to UBC Graduate School!