Brian Hunt

Associate Professor

Research Interests

marine food webs
ecosystem oceanography
plankton dynamics
open ocean
Coastal Ecosystems
climate change impacts on the ocean
salmon ecology
food web nutrition
stable isotopes
forage fish

Relevant Degree Programs

Research Options

I am available and interested in collaborations (e.g. clusters, grants).
I am interested in and conduct interdisciplinary research.
I am interested in working with undergraduate students on research projects.

Research Methodology

oceanography field sampling
Stable isotopes
Fatty acids
zooplankton nets


Master's students
Doctoral students
Postdoctoral Fellows
Any time / year round

Complete these steps before you reach out to a faculty member!

Check requirements
  • Familiarize yourself with program requirements. You want to learn as much as possible from the information available to you before you reach out to a faculty member. Be sure to visit the graduate degree program listing and program-specific websites.
  • Check whether the program requires you to seek commitment from a supervisor prior to submitting an application. For some programs this is an essential step while others match successful applicants with faculty members within the first year of study. This is either indicated in the program profile under "Admission Information & Requirements" - "Prepare Application" - "Supervision" or on the program website.
Focus your search
  • Identify specific faculty members who are conducting research in your specific area of interest.
  • Establish that your research interests align with the faculty member’s research interests.
    • Read up on the faculty members in the program and the research being conducted in the department.
    • Familiarize yourself with their work, read their recent publications and past theses/dissertations that they supervised. Be certain that their research is indeed what you are hoping to study.
Make a good impression
  • Compose an error-free and grammatically correct email addressed to your specifically targeted faculty member, and remember to use their correct titles.
    • Do not send non-specific, mass emails to everyone in the department hoping for a match.
    • Address the faculty members by name. Your contact should be genuine rather than generic.
  • Include a brief outline of your academic background, why you are interested in working with the faculty member, and what experience you could bring to the department. The supervision enquiry form guides you with targeted questions. Ensure to craft compelling answers to these questions.
  • Highlight your achievements and why you are a top student. Faculty members receive dozens of requests from prospective students and you may have less than 30 seconds to pique someone’s interest.
  • Demonstrate that you are familiar with their research:
    • Convey the specific ways you are a good fit for the program.
    • Convey the specific ways the program/lab/faculty member is a good fit for the research you are interested in/already conducting.
  • Be enthusiastic, but don’t overdo it.
Attend an information session

G+PS regularly provides virtual sessions that focus on admission requirements and procedures and tips how to improve your application.


Postdoctoral Fellows

Graduate Student Supervision

Master's Student Supervision

Theses completed in 2010 or later are listed below. Please note that there is a 6-12 month delay to add the latest theses.

An experimental and in situ application of stable isotopes and fatty acids to investigate the trophic ecology of moon jellyfish (Aurelia spp., Linnaeus 1758) (2021)

Scyphozoan jellyfish are important components of marine ecosystems as generalist feeders with complex trophic interactions. These interactions can be investigated using biomarkers, like stable isotope (SI) ratios and fatty acid (FA) profiles. However, the absence of reliable estimates for SI and FA turnover time and modification in jellyfish limits the accuracy of these approaches for investigation of jellyfish trophic ecology. In this thesis, I conducted a controlled feeding experiment for two scyphozoan predators (Aurelia aurita and Chrysaora pacifica) and two prey types (crustacean zooplankton and gelatinous A. aurita) to provide quantitative estimates for SI and FA turnover time and modification between trophic levels. I estimated SI trophic enrichment factors for jellyfish feeding on crustacean zooplankton (Δδ¹³C = 1.19‰ and Δδ¹⁵N = 2.09‰) and jellyfish feeding on interspecific jellyfish (Δδ¹³C = 1.59‰ and Δδ¹⁵N = 1.35‰). I found some similarities between both predators when consuming the same prey, which suggests some metabolic pathways that are conserved for jellyfish. Specifically, 18-carbon FAs decreased in proportion in the predators compared to their prey, while 20-carbon FAs increased, which implies a 2-carbon elongation pathway in jellyfish. By providing estimates for turnover time and modification of SIs and FAs for jellyfish, I have advanced the utility of SIs and FAs for investigating jellyfish trophic ecology. After establishing SI and FA turnover time and modification parameters, I applied these parameters to investigate the trophic ecology of Aurelia labiata in a temperate coastal food web. Using SIs and FAs for 152 jellyfish 19-225 mm in size, I documented a shift in diet, where the proportion of zooplankton in the diet of A. labiata increased as bell diameter increased. I also documented a size-based shift in the nutritional quality of A. labiata, where C:N decreased with size, arachidonic (ARA) and docosahexaenoic (DHA) acid increased with size, and eicosapentaenoic (EPA) acid was unaffected by size. Only changes in C:N and DHA were apparently related to changes in the diet. Marine food webs are highly size structured, so these size-specific results will have implications for the flow of energy and nutrients through jellyfish in marine food webs broadly.

View record

Strategies for coexisting: juvenile pink and chum salmon diets and interactions in a challenging section of coastal migration (2021)

The cultural and ecological contributions of salmon cannot be understated, as these keystone species have underpinned coastal ecosystems and societies from time immemorial. Despite this millennia-long intimate relationship with Pacific salmon, returns of stocks have become unpredictable and difficult to manage from overfishing and multiple complex stressors. Research has shown that juvenile salmon feeding is a crucial factor for growth and recruitment, and the ocean conditions driving prey availability are tightly coupled with survival of salmon. Pink and chum are abundant co-migratory species of salmon that may exert competitive pressure for food resources during their vulnerable early marine phase. However, competition research on juvenile pink and chum salmon is limited, especially within the complex British Columbia coast. This research aimed to fill gaps in understanding of juvenile pink and chum foraging strategies and interactions in areas of good and poor foraging conditions during their coastal outmigration. In the Discovery Islands and Johnstone Strait regions, there were foraging deserts and oases, where juvenile salmon mean stomach fullness values ranged from 6% body weight. In good foraging conditions, juvenile pink and chum both consumed the same high-quality crustacean prey with limited competition, but under poor foraging scenarios, salmon diets differed. Chum salmon consistently consumed gelatinous prey and pink salmon relied more heavily on copepods and nearshore zooplankton, differing in niche in response to competitive interactions. There was a match between predators and prey in 2015, when salmon fed on larger prey, and were in healthier condition (K = 1.0). There was a potential mismatch in 2016, when small prey taxa may have caused poorer condition for juvenile salmon (K = 0.94). Chum salmon had a stronger relationship to prey size than pink, when larger chum successfully consumed the largest prey. These foraging strategies of opportunistic specialization may indeed provide salmon with resilience to face the challenges of shifting climates. Pink and chum salmon can be monitored as indicators for ecosystem health and zooplankton availability. Salmon reflect the health of socio-ecological systems and require our understanding and care to view them holistically as they migrate through diverse, challenging habitats.

View record

A compilation and meta-analysis of salmon diet data from the North Pacific Ocean (2020)

No abstract available.

Current Students & Alumni

This is a small sample of students and/or alumni that have been supervised by this researcher. It is not meant as a comprehensive list.

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.


Read tips on applying, reference letters, statement of interest, reaching out to prospective supervisors, interviews and more in our Application Guide!