Maria Holuszko

Associate Professor

Relevant Degree Programs


Graduate Student Supervision

Doctoral Student Supervision

Dissertations completed in 2010 or later are listed below. Please note that there is a 6-12 month delay to add the latest dissertations.

Characterization of non-metal fraction of waste printed circuit boards to promote recycling (2021)

Electrical and electronic equipment has become an integral part of modern society. With the current technological advances, the life span of this equipment has been shrinking, leading to waste generation and issues related to end-of-life waste disposal. The circular economy model has been proposed to address the growing volume of e-waste. The model encourages reduction and reuse to decrease waste generation and encourages recycling to promote efficient natural resource usage.One of the challenges with promoting the circular economy model for e-waste is the insufficiency or absence of the recycling process for the non-metal fraction. The low value associated with the non-metal fraction increases its probability of being disposed of in landfills. This research explored the possibility of utilizing low-cost physical separation processes common in the mineral processing industry to recycle the non-metal fraction obtained from waste printed circuit board.The study showed that a density-based separation could theoretically be used to separate organic, inorganic, and residual metal streams from the non-metal fraction, thus increasing its reusability. The float-sink test and derived washability curves and washability indices showed that a conceptual three-product gravity separation process could produce an organic fraction with 47% yield at 86% organic content and a reject stream with a 35% yield at 72% fiberglass content. A gravity separation-based flowsheet was proposed for the recycling of non-metal fraction, and the potential applications of the recycled products were identified. Further test work at the pilot level would be required to estimate the process efficiency, related costs and understand the product characteristics for their proper application.This research also provided a simplified approach for determining the loss on ignition that can be used to estimate the separation efficiency. It also showed the applicability of advanced techniques such as inverse gas chromatography and micro-FTIR for analyzing the surface heterogeneity and polymeric identification of non-metal fraction components. Overall, the research used an interdisciplinary approach to provide a potential solution for the non-metal fraction to the recycling industry using tools and processes used in the coal and mineral processing industry.

View record

Investigating methods to improve the co-firing of biomass with coal using CFD simulations (2021)

Biomass as a renewable energy source can be burnt with coal in a coal-fired plant to reduce the impact of fossil fuel on the environment. The aim of this research is to investigate methods that can improve the co-firing of biomass with coal. Initially, a CFD model was validated by comparison with experimental data reported in the literature. Three mesh sizes were tested to prove that simulation results are mesh independent. The model was then applied to simulate the co-firing process with a 3:2 biomass-to-coal mixing ratio. Unsophisticated modifications of the furnace geometry near the inlet and the swirl angle were introduced to study their effect on co-firing. CFD simulations were extended to study the influence of particle shrinkage on co-firing due to biomass pelletization. Furthermore, fine coal tailings generated from coal processing (CT), raw biomass (RB), and torrefied biomass (TB) were characterized for subsequent CFD investigation on mono-firing and co-firing of the different fuels. Simulation results show that the modified furnace geometry with gradual expansion and a larger swirl angle leads to uniform temperature distribution (1650-1720 K) in the furnace vs. a more variant temperature profile (950-1500 K) for the original furnace geometry. Besides, an increase in the tangential component of gas velocity near the center from 1 m/s to 3 m/s with the modified furnace geometry results in a longer residence time of the particles and further reduction of unburnt fixed carbon by 55% from coal at the exit. With biomass pelletization, simulation outputs show that the compressed particles with particle density 1000 kg/m³ have slower volatilization rate and surface reaction, as well as a shorter residence time. This in turns causes a higher percentage of unburnt fixed carbon at the exit though NO emission is slightly lower. As for the co-firing of biomass with fine coal tailings, results indicate that CT alone, CT+TB, and CT+RB blended fuel are associated with 13%, 10% and 28% unburnt carbon, respectively. It may be concluded that co-firing coal tailings with torrefied biomass is better for co-firing since CT+TB also has the lowest NO emission among the different fuels.

View record

Master's Student Supervision

Theses completed in 2010 or later are listed below. Please note that there is a 6-12 month delay to add the latest theses.

Chemical composition of coal surface as derived from micro-FTIR and its effects on contact angle (2016)

In this study, in-situ image analysis, contact angle measurements, micro-FTIR spectroscopy and SEM are used to obtain information on the surface composition of coal. The heterogeneous coal surface is investigated with regard to the distribution of the chemical functional groups and its effect on hydrophobicity as derived from contact angle measurements. Contact angles obtained from sessile drop and captive bubble techniques are correlated with the semi-quantitative ratios from micro-FTIR spectroscopy. As part of the new methodology, image analysis and SEM are also applied in order to characterize and analyze for the petrographic composition of areas that are subjected to these measurements. An opposite trend between high rank coal and low rank coal is found in relation to the micro-FTIR semi-quantitative ratios versus contact angle. For lower rank coal, the increase in Aromaticity 1 and 2 led to an increase in the contact angle, while the increased quantity of aliphatic groups decreased the contact angle values. For high rank coal, the rising aliphatic groups increased the contact angle values and the increase in Aromaticity 1 and 2 led to smaller contact angle values. The newly introduced CHal/C=O was used to assess the abundance of aliphatic groups and oxygenated groups. The increased content of oxygenated groups in the high rank coal samples led to a decrease in the contact angle, which is consistent with the findings of previous studies. For low rank coal samples, although the correlation was less distinct, an opposite trend was observed.

View record

News Releases

This list shows a selection of news releases by UBC Media Relations over the last 5 years.

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.


Planning to do a research degree? Use our expert search to find a potential supervisor!