Patricia Camp

Associate Professor

Research Interests

pulmonary rehabilitation
health services delivery
chronic obstructive pulmonary disease
Indigneous health
Mixed methods
Knowledge translation
Physical Activity
E-health

Relevant Degree Programs

 

Research Methodology

knowledge translation
Mixed methods
Indigenous health research
rural research
physical activity monitors
geoinformatics
community-based research
health services delivery

Recruitment

Complete these steps before you reach out to a faculty member!

Check requirements
  • Familiarize yourself with program requirements. You want to learn as much as possible from the information available to you before you reach out to a faculty member. Be sure to visit the graduate degree program listing and program-specific websites.
  • Check whether the program requires you to seek commitment from a supervisor prior to submitting an application. For some programs this is an essential step while others match successful applicants with faculty members within the first year of study. This is either indicated in the program profile under "Requirements" or on the program website.
Focus your search
  • Identify specific faculty members who are conducting research in your specific area of interest.
  • Establish that your research interests align with the faculty member’s research interests.
    • Read up on the faculty members in the program and the research being conducted in the department.
    • Familiarize yourself with their work, read their recent publications and past theses/dissertations that they supervised. Be certain that their research is indeed what you are hoping to study.
Make a good impression
  • Compose an error-free and grammatically correct email addressed to your specifically targeted faculty member, and remember to use their correct titles.
    • Do not send non-specific, mass emails to everyone in the department hoping for a match.
    • Address the faculty members by name. Your contact should be genuine rather than generic.
  • Include a brief outline of your academic background, why you are interested in working with the faculty member, and what experience you could bring to the department. The supervision enquiry form guides you with targeted questions. Ensure to craft compelling answers to these questions.
  • Highlight your achievements and why you are a top student. Faculty members receive dozens of requests from prospective students and you may have less than 30 seconds to peek someone’s interest.
  • Demonstrate that you are familiar with their research:
    • Convey the specific ways you are a good fit for the program.
    • Convey the specific ways the program/lab/faculty member is a good fit for the research you are interested in/already conducting.
  • Be enthusiastic, but don’t overdo it.
Attend an information session

G+PS regularly provides virtual sessions that focus on admission requirements and procedures and tips how to improve your application.

 

Master's students
Doctoral students
Any time / year round

1.  Indigenous lung health.  Study 1 is to estimate the prevalence of chronic obstructive pulmonary disease in First Nations communities in north-central BC. We are also specific risk related to respiratory symptoms including indoor air quality and occupation. Study 2 is to develop a First Nations pulmonary rehabilitation program, that could include using telehealth to deliver a program. Study 3 aims to develop emergency planning for people with chronic disease living in remote and rural First Nations communities.

2.   Pulmonary rehabilitation for individuals hospitalized with an acute exacerbation of COPD. This research program aims to investigate the health services delivery issues related to providing pulmonary rehabilitation in the hospital setting for patients with COPD who are admitted with an exacerbation of their disease. Research questions will include: current practice patterns related to inpatient exercise and mobility; barriers and facilitators to initiating these programs, key components of programs, program components [including exercise and education], and use of interdisciplinary teams.

I support public scholarship, e.g. through the Public Scholars Initiative, and am available to supervise students and Postdocs interested in collaborating with external partners as part of their research.
I support experiential learning experiences, such as internships and work placements, for my graduate students and Postdocs.
I am open to hosting Visiting International Research Students (non-degree, up to 12 months).
I am interested in hiring Co-op students for research placements.

Graduate Student Supervision

Doctoral Student Supervision (2008-2018)
Resting heart rate and arterial stiffness relationship in patients with chronic obstructive pulmonary disease (2017)

Background: Patients with chronic obstructive pulmonary disease (COPD) are known to have an increased risk of ischemic heart disease. Persistently elevated resting heart rate and arterial stiffness, two common clinical manifestations in COPD, are known determinants of myocardial ischemia as well as predictors of cardiovascular events. Controversies exist on the effect of pulmonary rehabilitation on these ischemic heart disease risk factors. No study has explored the effect of pulmonary rehabilitation on the resting heart rate - arterial stiffness relationship in COPD.Objectives and Methods: The overall objectives of this dissertation were to provide a comprehensive investigation of the resting heart rate and arterial stiffness in patients with COPD, and explore the impact of pulmonary rehabilitation on their relationship in this population. We describe the association between resting heart rate and prior myocardial infarction in patients with chronic lung disease attending pulmonary rehabilitation (Chapter 2). We test the reliability of resting heart rate and arterial stiffness measurements in COPD patients (Chapters 3 and 4). We determine the association between resting heart rate and arterial stiffness (Chapter 5), and explore the potential beneficial effects of standard pulmonary rehabilitation on resting heart rate and/or arterial stiffness in COPD (Chapter 6).Summary of findings: We showed that an elevated resting heart rate is a potential indicator of prior myocardial infarction in patients with chronic lung disease (Chapter 2). Resting heart rate and arterial stiffness measurements have excellent and substantial reliability, respectively, under a standardized procedure in COPD patients (Chapters 3 and 4). The association between resting heart rate and arterial stiffness in control subjects is not present in patients with COPD (Chapter 5). Standard pulmonary rehabilitation in COPD reduces arterial stiffness, but not resting heart rate, and does not impact the resting heart rate - arterial stiffness relationship (Chapter 6).Conclusions: This dissertation provides new knowledge on resting heart rate and arterial stiffness, as well as on the potential beneficial effects of pulmonary rehabilitation on these two ischemic heart disease risk factors in COPD patients.

https://open.library.ubc.ca/collections/24/items/1.0347208

Master's Student Supervision (2010-2017)
Selecting quality indicators for pulmonary rehabilitation programs in Canada : a modified RAND Appropriateness Method study (2017)

Pulmonary rehabilitation (PR) is a comprehensive intervention of self-management education and exercise training that improves quality of life, exercise tolerance, symptoms of dyspnea, and reduces the risk of hospitalization in patients living with chronic respiratory diseases such as chronic obstructive pulmonary disease, asthma, lung cancer, and interstitial lung disease. Despite the proven benefit of pulmonary rehabilitation, recent studies have found notable inconsistencies in its organization and delivery. Inconsistencies within clinical practice are likely to affect the quality in the delivery of pulmonary rehabilitation. Quality indicators (QIs) are tools similar to a checklist that can potentially remediate these concerns. While other jurisdictions have created quality indicators for pulmonary rehabilitation programs, their methodological approach to developing these quality indicators is questionable. This study developed 56 quality indicators with a rigorous approach using a modified RAND Appropriateness Method. A panel comprising twelve PR healthcare professionals and stakeholders was created to create a list of QIs. The panel rated each indicator based on four criteria (importance, scientific soundness, reliability, and feasibility) and listed which indicator they believed could determine a quality pulmonary rehabilitation program. This study recommends that the 56 QIs, based upon consensus, be used for operationalizing the evaluation and auditing of PR programs as well as for establishing clinical benchmarks.

https://open.library.ubc.ca/collections/24/items/1.0354689

LungFIT : validating a smartphone application for pulmonary rehabilitation (2014)

Introduction: Chronic Obstructive Pulmonary Disease (COPD) symptoms of dyspnea, exercise intolerance, and reduced health related quality of life are best treated with pulmonary rehabilitation (PR). Despite benefits, transportation, availability of PR programs, and social support barriers limit PR access. Telerehabilitation (TR) may provide the solution by utilizing pulse oximetry to monitor patient oxygen saturation (SpO₂) and heart rate (HR), along with measures of exercise intensity to ensure patient safety during home-based, unsupervised rehabilitation exercise. Study Purpose: To test the validity and reliability of a smartphone system called LungFIT in measuring heart rate, oxygen saturation, and distance in a healthy population. The LungFIT’s functionality was also assessed. Methods: Functionality of the LungFIT was assessed by a time-to-complete test and the adapted Mobile Phone Usability Questionnaire (MPUQ). SpO₂ and HR measurements by 3 different LungFIT probes (Nonin, Masimo, and LionsGate Technologies) were evaluated during 5-minute cycle ergometry (50 watts at 60-70 revolutions/minute) and treadmill walking tests (3km/hr). Both tests were repeated 3 times. Distance measurements were assessed by outdoor walking tests of a 1 city block course. Results: SpO₂ measurements were valid with mean biases ranging between -0.93% and 0.88% and limits of agreement no greater than ±3.78% over the 3 LungFIT probes. The Masimo probe had the smallest mean biases ranging from 0.18% to 0.74% and mean limits of agreement ranging from ±1.94% (±0.93% 95% confidence interval) to ±2.79% (±1.34% 95% confidence interval). All probes had moderate to good SpO₂ measurement reliability (ICCs between 0.65-0.87) with the Masimo probe performing the best (all ICCs ≥ 0.82). During exercise, HR measurements were invalid (mean limits of agreement > 10.00 beats/min), but reliable (ICCs between 0.87-0.97). Time-to-complete assessments found no software issues, but revealed 4 instances of navigation or setup issues. The MPUQ showed ease of use despite lack of interface appeal. Conclusion: During exercise, the 3 LungFIT probes were reliable in measuring SpO₂ and HR, but only valid in measuring SpO₂. Overall, the Masimo probe was the most valid and reliable of the 3 probes tested. Future LungFIT prototypes will improve user interface and accuracy of distance measurements.

https://open.library.ubc.ca/collections/24/items/1.0135582

Physical activity measurement strategies in advanced chronic lung disease (2014)

Background: Physical activity may reduce mortality risk in advanced chronic lung disease by optimizing functional capacity, which is a major prognostic indicator in lung transplantation candidates. There is uncertainty as to the optimal method to measure physical activity in this patient population. We assessed different commercially-available physical activity measurement techniques (flex heart rate monitoring (FHR); pedometry; tri-axial accelerometry; and multi-sensor technology) by investigating their agreement with indirect calorimetry (IC) in adult lung disease patients (chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD), and cystic fibrosis (CF)) with advanced pulmonary impairment. Methods: This is a cross-sectional method comparison study conducted on two separate days. We recruited consecutive COPD, ILD, and CF patients with physician diagnosis of advanced pulmonary impairment. On day one, participants performed cardiopulmonary exercise testing until exhaustion with measurements of oxygen uptake (VO₂) and heart rate (HR) collected. On day two, subjects had their VO₂ and HR measured during standardized resting and sub-maximal activity. Simultaneous VO₂ and HR measures from both days were used to develop individual regressions for FHR-derived energy expenditure (EE). We then simultaneously measured each subject’s EE using a variety of index measures of physical activity and IC during standardized “free-living” type activities and varying intensities of sub-maximal cycle exercise. Results: In a sample of eight participants (CF, n=5; COPD, n=2; ILD, n=1), Flex HR methods using submaximal (FMSUB) and CPET-derived (FMCPX) calibrations showed the best agreement and interchangeability with IC during free-living and cycling activities compared to the SenseWear (SW) and ActiCal (AC) devices as evidenced by lower mean differences with IC and widths of limit of agreement (LOA) + 95% confidence interval (CI). For the secondary index methods assessed, the Tractivity and DigiWalker devices significantly over and underestimated IC EE respectively (p0.05) over the entire protocol. Conclusion: Our study found that the Flex HR method for EE estimation had the lowest bias and variability during free-living activities and exercise. EE estimation using Flex HR methods may be potentially useful clinical tools to ensure metabolic energy balance and activity monitoring in advanced lung disease groups.

https://open.library.ubc.ca/collections/24/items/1.0165539

 
 

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.