Nicholas Harvey


Relevant Degree Programs


Graduate Student Supervision

Master's Student Supervision (2010 - 2018)
Low-stretch trees for network visualization (2015)

Low-stretch trees are spanning trees which provide approximate distance preservation for edges in the original graph by minimizing stretch. We explore the application of these trees to network visualization. In particular, we present a novel edge bundling technique, LSTB, that computes edge bundles explicitly and efficiently and does not rely on fixed vertex positions. This approach is in contrast to previous methods, which require the user to provide a layout of the input graph. We introduce an abstract framework for edge bundling methods, which provides a unifying formalization of bundling terminology and techniques, as well as a classification of such methods. Based on this framework, LSTB provides algorithmic support for sophisticated visual encodings, including dynamic layout adjustment and interactive bundle querying.In addition, we explore the use of the multiplicative weights update method to compute a distribution over low-stretch trees in order to achieve low stretch for all edges in expectation, rather than on average. We present the results of using this distribution in place of a single low-stretch tree as a routing graph for LSTB. While the distribution provides better stretch guarantees, we find that from a visual perspective a single low-stretch tree provides a better routing graph for the LSTB edge bundling application.

View record

Near-Optimal Herding (2014)

No abstract available.

Current Students & Alumni

This is a small sample of students and/or alumni that have been supervised by this researcher. It is not meant as a comprehensive list.

Membership Status

Member of G+PS
View explanation of statuses

Program Affiliations


If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.


Learn about our faculties, research, and more than 300 programs in our 2021 Graduate Viewbook!