Stuart Turvey

Professor

Research Interests

Microbiome cohort studies
Primary Immune Deficiencies

Relevant Degree Programs

 

Biography

Stuart Turvey, MBBS, DPhil, FRCPC is a Professor of Pediatrics at the University of British Columbia where he holds the Aubrey J. Tingle Professorship in Pediatric Immunology. He is a Pediatric Immunologist based at BC Children’s Hospital, and Director of Clinical Research at the Child & Family Research Institute. Prior to coming to Vancouver, Dr Turvey completed both his Pediatric Residency and Allergy/Immunology Fellowship at Children’s Hospital, Harvard Medical School, Boston. He holds a medical degree (MB BS) from the University of Sydney, Australia and a doctorate (DPhil) in Immunology from Oxford University where he was a Rhodes Scholar. Dr Turvey is a Fellow of the Royal College of Physicians and Surgeons of Canada and a Diplomate of the American Board of Pediatrics.

Dr Turvey provides clinical care in the specialties of Clinical Immunology and Rheumatology, while his research program focuses on pediatric infectious and inflammatory diseases. Specifically, Dr Turvey is interested in the role of innate immunity in protecting infants and young children from infectious agents, and how abnormalities of the innate immune system contribute to inflammatory diseases of childhood.

RESEARCH AREAS
• Innate immunity
• Host defense
• Primary immunodeficiency diseases (PIDs)
• Role of Toll-like receptors in human disease
• Airway inflammation in cystic fibrosis
• Asthma and allergic disease

RESEARCH PROGRAM
Despite much effort, we know little about how the healthy child is protected from infectious disease, and even less about why some children develop inflammatory disorders. Why do some healthy children succumb to overwhelming bacterial infection, while others either survive infection or do not become infected at all? Why do some children suffer crippling juvenile arthritis or life-threatening asthma?

My research program is translational, interdisciplinary and unique in its focus on understanding the role of innate immunity in infectious and inflammatory diseases of childhood. Starting with a population of children with a defined infectious or inflammatory disease phenotype (e.g., undue susceptibility to infection, juvenile idiopathic arthritis, asthma), I aim to determine the underlying cellular, molecular and genetic abnormalities responsible for the disease through detailed immunological, genomic and proteomic analysis. The new knowledge generated by this approach will aid diagnosis, elucidate mechanisms of disease pathogenesis and, ultimately, identify novel targets for anti-inflammatory and anti-infectious therapeutic agents.

Recruitment

Master's students
Doctoral students
Postdoctoral Fellows
Some financial support is available
Any time / year round

Genetics of Susceptibility to Childhood Infection

Until very recently, clinical immunologists have focused most attention on patients with a ‘noisy clinical phenotype’—multiple, severe and recurrent infections. Indeed, the origin of primary immunodeficiencies is generally attributed to Bruton’s 1952 description of X-linked agammaglobulinemia in a boy whose repeated pneumococcal infections demanded clinical attention.

Today, enhanced understanding of human immunity combined with ever more sophisticated tools to dissect the immune response have allowed clinical immunologists to look beyond these "noisy", severely immunocompromised patients to individuals with less obvious immune defects. We have entered the era of "subtle" primary immunodeficiencies that will begin to precipitate a fundamental change and expansion of the focus of clinical immunologists.

My lab is involved in searching for subtle genetic immune defects in apparently healthy children who have serious immunological disorders. This journey towards subtlety is anticipated to translate into better care for our patients through improved diagnosis, combined with tailored treatment and targeted prophylaxis.

Innate Immunity and Lung Inflammation in Cystic Fibrosis

Cystic fibrosis (CF) is the most common, deadly genetic disease affecting young Canadians. Even today, only half of the people living with CF will survive beyond their mid-thirties. New treatments for CF are critically needed.

Lung disease is the major life-limiting factor for people living with CF. Lung injury in CF occurs through a vicious cycle of airway blockage, infection and inflammation. Current CF treatments rely upon physiotherapy to reduce airway blockage and antibiotics to treat the infections, but these treatments do not specifically deal with inflammation. New treatments to simultaneously target airway inflammation are likely to provide substantial additional benefits in improving the quality and length of life for those with CF.

Through synergistic studies harnessing the power of cell biology, chemistry and functional genomics, we are working to identify optimal "druggable" targets responsible for CF airway inflammation and to discover novel anti-inflammatory drugs. Ultimately, these experiments are designed to develop new therapies for safely reducing lung inflammation and improving the quality and length of life of people with CF.

Canadian Healthy Infant Longitudinal Development (CHILD) Study

Over the past 30 years there has been an increasing concern about the effects of environment on health. In particular, since infants spend the majority of their time indoors, there is intense interest in the impact indoor pollution has on the health of our children. Our indoor environment has become a public health priority as growing evidence suggests that unseen environmental contaminants in our living spaces may have important effects on children's health and development.

The Canadian Healthy Infant Longitudinal Development (CHILD) Study is a multicentre, multidisciplinary, longitudinal, population-based birth-cohort study of 5,000 children enrolled "pre-birth" and followed for five years (www.canadianchildstudy.ca). The main purpose of this study is to determine what aspects of the environment interact with genetic factors to affect children’s health and development. I am a co-principal investigator for the CHILD study and I lead the Vancouver study site.

I am open to hosting Visiting International Research Students (non-degree, up to 12 months).

Publications

Membership Status

Member of G+PS

Program Affiliations

Department(s)

 

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.