Derek Gates

Professor

Relevant Degree Programs

 

Graduate Student Supervision

Doctoral Student Supervision (Jan 2008 - May 2019)
From main group to transition metal-containing Br?nsted acid initiators for the cationic polymerization of olefin monomers (2018)

No abstract available.

Synthesis, structure, and properties of phosphorus-containing flame retardants (2017)

Phosphorus-containing flame retardants were synthesized and a variety of strategies for rendering them non-leachable were investigated. Chapter 1 gives a history of flame retardants, with a focus on the issues associated with their usage. An introduction to the mechanisms of flame retardancy and the effect of flame retardants on the thermal degradation of polymeric materials is also given. An overview of the different methods of incorporating phosphorus-containing flame retardants into polymeric materials is included. Chapter 2 described the synthesis of a poly(methylene phosphine) and its oxide by the addition polymerization of MesP=CPh₂. These polymers are moderately effective non-leachable flame retardants when tested by thermogravimetric analysis, Technical Association of Pulp and Paper Industry (TAPPI) Standard Method T461 cm-00, and Limiting Oxygen Index (LOI).The C-H activated microstructure of two poly(methylene phosphine)s, synthesized by the anionic polymerization of ArP=CPh₂ (Ar = 2,4,6-trimethylphenyl, Mes; 2,6-dimethylphenyl, Xyl), is investigated in Chapter 3 using model chemistry and NMR spectroscopic analysis. A mechanism for the anionic polymerization of phosphaalkenes in which a C-H activation occurs is proposed based on kinetic studies, isotopic labelling, and theoretical calculations.The synthesis of the molecular cyclophosphazene-based flame retardant hexakis(2-aminoethyl)aminophosphazene is reported in Chapter 4. This phosphazene is an effective yet leachable flame retardant for paper when tested by thermogravimetric analysis, TAPPI Standard Method T461 cm-00, and LOI. An attempt to covalently link hexakis(2-aminoethyl)aminophosphazene to carboxylatesin pulp via carbodiimide coupling is described in Chapter 5. While unsuccessful, carbodiimidecoupling can be employed in the synthesis of several simpler phosphazene-amide derivatives.In Chapter 6, a non-leachable flame retardant treatment for paper using hexakis(2-aminoethyl)aminophosphazene and sodium carboxymethyl cellulose is described. The efficacyof the treatment is evaluated by TAPPI Standard Method T461 cm-00, LOI, and SEM-EDS. Thesolid precipitate formed in the reaction between hexakis(2-aminoethyl)aminophosphazene andcarboxylmethyl cellulose is studied using solid-state CP/MAS ¹³C NMR and IR spectroscopy,and the interactions between hexakis(2-aminoethyl)aminophosphazene and carboxylmethylcellulose is modelled using an ammonium-containing phosphazene and carboxylate salt.

View record

The synthesis and photophysical properties of new phosphorus-containing macromolecules (2017)

The thesis outlines the synthesis and photophysical properties of novel macromolecules that contain phosphorus atoms. Significantly, the fluorescence properties of the polymers prepared in this thesis are dependent on the chemical environment at phosphorus. These materials have the potential to be useful sensors for analytes that react with the phosphine moieties in these polymers.Chapter 1 introduces conjugated polymers and details known examples of phosphorus-containing polymers of this class that have been previously reported. A particular focus is the synthesis of these materials, as well as their photophysical properties. The known examples of molecular phosphine sensors are also presented. Chapters 2 and 3 focus on the anionic polymerization of phosphaalkene monomers to make novel poly(methylenephosphine)s, (PMPs) that contain fluorescent polyaromatic substituents. The synthesized polymers exhibited “turn on” fluorescence upon oxidation of the phosphorus centres. Notably, the C-pyrenyl PMP synthesized in Chapter 3 was also fluorescent in the solid state when the phosphine centres were oxidized.Chapter 4 describes the synthesis and photophysical properties of poly(p-phenylenediethynylene phosphine)s, PPYPs, a new class of phosphorus-containing macromolecule. The polymers were prepared using a nickel-catalyzed coupling between phenyldichlorophosphine and dialkynes. The resulting materials displayed photophysical characteristics consistent with a degree of conjugation through the phosphorus centres within the polymer. Upon oxidation of the phosphorus atoms in PPYPs, “turn on” emission was observed. Remarkably oxidized PPYPs were also fluorescent in the solid state and therefore may have application as solid-state sensors or as OLEDs. Chapter 5 describes the study of a fluorene-containing PPYP as a fluorescent sensor for metal analytes. Remarkably the polymer exhibited a substantial fluorescence increase upon coordination to gold and mercury ions whereas exposure of the polymer to other ions resulted in no fluorescence increase. Chapter 6 provides a summary of the work contained within this thesis, and future directions for these projects are postulated.

View record

Synthesis, polymerization and reactions of enantiomerically pure phosphaalkenes (2016)

This thesis outlines the polymerization and novel reactivity of enantiomerically pure compounds featuring the relatively uncommon phosphaalkene moiety. Chapter 1 introduces the chemistry of the phosphaalkene (Ar-P=CR₂) structural fragment. This motif is compared and contrasted to the established chemistry of C=N and C=C groups. Similarities and differences are highlighted by an examination of: (a) phosphaalkene synthesis, (b) phosphaalkene polymerization and (c) phosphaalkene-metal coordination.Chapter 2 details the addition reactions of MeM (M = MgBr, Li) nucleophiles to enantiomerically pure phosphaalkene-oxazoline 1.10a [PhAk-Ox, MesP=CPh(CMe₂Ox)]. Of note, the reaction of MeMgBr and PhAk-Ox is highly diastereoselective and affords a new P-chiral phosphine oxazoline ligand. Chapters 3 and 4 report the free radical initiated homo- and co-polymerizations (with styrene) of enantiomerically pure phosphaalkene-oxazolines 1.10a (Chapter 3) and 4.1a [MesP=CPh(3-C₆H₄Ox), Chapter 4]. The coordination of rhodium(I) to copolymers of 1.10a and styrene permits the isolation of novel macromolecular complexes. Additionally, polymers of 4.1a display unique spectroscopic signatures that permit the direct assignment of styrene-phosphaalkene linkages in the polymer backbone. Chapters 5 and 6 highlight the coordination chemistry of phosphaalkenes. Chapter 5 discusses the syntheses of κ³(PNN)-copper(I) complexes featuring enantiomerically pure pyridine-bridged phosphaalkene-oxazoline 5.1a [ArP=CPh(2-C₅H₃N-6-Ox)]. Chapter 6 explores the insertion of the P=C functional group into Pd–R bonds, permitting the synthesis of novel phosphapalladacyclopropanes (6.1a-b) and palladium(II) complexes featuring 1,2-dihydropyridinato donors (6.3 and 6.4). Chapter 7 provides perspective for the work contained within this thesis.

View record

From molecular to macromolecular and back : investigation of hexacoordinated phosphorus(v) anions and poly(methylenephosphine)s (2012)

Alkali metal salts of tris(benzenediolato)phosphate [1]–, K[1] and Na[1], were preparedand examined as halide abstraction reagents. Compound K[1] reacts with (dppp)PdCl₂ [dppp =1,3-bis(diphenylphosphino)propane] (1:1 ratio) or [(cod)RhCl]₂ (2:1 ratio) to afford[(dppp)Pd(μ-Cl)]₂[1]₂ and (cod)Rh[1], respectively. Brønsted acids H(DMSO)₂[1] andH(DMF)₂[1] were isolated as crystalline solids. The basicity of [1]– was examined using IRspectroscopy and determined to be comparable to [BF4]–. Brønsted acid H(DMF)₂[1] is effectivein the protonolysis of late transition metal-alkyl bonds. Its stoichiometric reaction with(dppe)PdMe₂ [dppe = 1,2-bis(diphenylphosphino)ethane] affords either[(dppe)Pd(NCMe)Me][1] (1:1 ratio) or [(dppe)Pd(NCMe)₂][1]₂ (1:2 ratio). Brønsted acidH(DMF)₂[1] initiates the cationic polymerization of n-butyl vinyl ether at 17 °C to affordmoderate molecular weight poly(n-butyl vinyl ether) (Mn = 10,000 g mol-¹, PDI = 2.80).Brønsted acids of tris(tetrachlorobenzenediolato)phosphate [2]–, H(OEt₂)₂[2] andH(OEt₂)(NCMe)[2], were isolated as crystalline solids. Brønsted acid H(OEt₂)₂[2] was shown tobe an effective initiator for the cationic polymerizations of n-butyl vinyl ether, styrene andisoprene. High molecular weight poly(n-butyl vinyl ether) was isolated from polymerization at–78 °C (Mn = 122,000 g mol-¹, PDI = 1.19). Atactic polystyrene of moderate molecular weightwas isolated from polymerization at –50 °C (Mn = 55,400 g mol-¹, PDI = 1.62). Moderatemolecular weight trans-polyisoprene was isolated from polymerization at –38 °C (Mn= 77,000 g mol-¹, PDI = 1.34).Poly(methylenephosphine) and poly(methylenephosphine) oxide were coated onto papersheets made from thermomechanical pulp. TAPPI (Technical Association of Pulp and PaperIndustry) Standard Method T461 cm-00 was used to evaluate the flame retardant properties of the polymers. Paper samples coated with the phosphorus-based polymers exhibited a higherdegree of charring when compared to untreated paper and were comparable to paper treated withthe monobasic ammonium phosphate standard.The microstructure of the 1-(2,2,6,6-tetramethylpiperidinyloxy)-1-phenylethane initiatedpoly(methylenephosphine) was examined by NMR spectroscopy. Evidence suggests theoccurrence of 1,5-hydrogen abstraction rearrangement during the propagation step ofpolymerization. The unexpected microstructure was modeled using PhCH₂P(Mes)CHPh₂.

View record

Strained cationic heterocycles and other novel phosphaalkene-derived species (2011)

This thesis outlines the results from three projects undertaken as part of my Ph.D.studies, with Chapter 1 serving as a general introduction and Chapter 5 serving tosummarize the thesis.Chapter 2 details a Lewis acid-mediated methodology for preparingphosphaalkenes from silyl phosphines [RP(SiMe₃)₂; R = alkyl, aryl, silyl] and aldehydesor ketones. The scope of this methodology was explored and phosphaalkenestBuP=CHtBu (1), AdP=CHtBu (2), MesP=CHtBu (3) and MesP=CPh₂ (4) were preparedon preparative scales. For phosphaalkene 1, this reduced its synthesis from 11 weeks toless than one hour. Additionally, AlCl₃ and GaCl₃ adducts of phosphaalkenes 1 and 2were synthesized and characterized by X-ray crystallography.In Chapter 3, the reactions of phosphaalkenes 1 and 2 with potential cationicinitiators are discussed. For both phosphaalkenes, treatment with substoichiometricHOTf affords rare diphosphiranium cations. Mechanistic studies reveal that this processproceeds via phosphenium triflate intermediates. Unexpectedly, treatment with therelated MeOTf affords diphosphetanium cations via methylenephosphoniumintermediates. Additionally, it was found that the diphosphetanium cation formed fromphosphaalkene 1 would react with two additional equivalents of MeOTf to afford anunprecedented dicationic diphosphetanium.Finally, Chapter 4 describes the abnormal reaction of IMes, a N-heterocycliccarbene (NHC), with phosphaalkenes to afford novel 4-phosphino-2-carbenes.Interestingly, DFT calculations of plausible reaction intermediates suggest the reactionsproceed via free abnormal NHCs (aNHCs). The phosphino-functionalized NHC (5),derived from the reaction of IMes with MesP=CPh₂, was used to study the coordinationproperties of this novel class of ligands. Treating carbene 5 with substoichiometric(tht)AuCl (0.5 equiv) affords a biscarbene complex, indicating that AuCl is preferentiallycoordinated by the carbene functionality. P-coordination of AuCl occurs when carbene 5is treated with additional equivalents of AuCl, confirming the bifunctional nature of thisligand. Additionally, rhodium and iridium complexes of the type (NHC)M(CO) ₂Cl (M =Rh, Ir) were prepared and CO stretching frequencies of these complexes suggest thatcarbene 5 has similar donor properties as IMes.

View record

Synthesis of P,N-Chelate Phoshaalkene-Oxazoline Ligands and Their Applications in Asymmetric Catalysis (2011)

No abstract available.

The structure and reactivity of poly(methylenephosphine)s (2009)

The initiation and termination steps of the anionic polymerization of P=C bonds have been modeled. The initiation step was investigated through the stoichiometric reaction ofMesP=CPh₂(1) with RL1 (R Me or n-Bu). In each case, the addition was highly regioselectivewith the formal attack of R at phosphorus to give the carbanion Li[Mes(R)P—CPh₂](R = Me(3a); n-Bu (3b)). To simulate the termination step, carbanions 3a and 3b were quenched in situwith various electrophiles: Mes(Me)P—CPh₂H (4a), Mes(n-Bu)P—CPh₂H (4b), Mes(Me)P—CPh₂Me (6a), Mes(Me)P—CPh₂—P(NEt₂)₂ (7a), Mes(Me)P—CPh₂—SiMe₂H (8a) and Mes(Me)P—CPh₂—SiMe₃(9a). The first use of MALDI-TOF MS in the study of the products of RLi (R = Me, n-Bu)initiated oligomerization of 1 is reported. The detected linear products R[MesP(=O)-CPh₂]nH withR—P and C—H end-groups are consistent with a chain growth mechanism. The oligomerization was extended to other monomers (MesP=CPhAr, Ar = p-C₆H₄F or p-C₆H₄OMe). The results suggest oligomers undergo fragmentation during MALDI-TOF analysis. The thermal reactions of M(CO)₆ (M = W, Mo, Cr) with polymer n-Bu[MesP-CPh₂]nH (10) and its model compound 4a are reported. IR was primarily used to determine the success of metal coordination in the polymer. EDXISEM and GPC-LLS were used to determine metal content of the materials. Most metallation was modest (>10%), however, as much as 20% was attained with Mo. The phosphorus-containing polymer 10 was found to be an effective ligand for gold(l) to afford n-Bu[MesP(AuCl)—CPh₂]nH 11, a new class of macromolecule with high gold content. The prepared model compound MeMesP(AuCI)—CPh₂H 12 was characterized by X-ray crystallography and NMR spectroscopy. Block copolymers containing phosphorus atoms in the backbone were prepared andmetallated with gold(l). The living polymerization of isoprene (I) and then phosphaalkene I affords block copolymers PIm-b-[MesP-CPh₂]n (13a: m = 308, n = 46; 13b: m = 222, n = 77). Treating PIm-b-[MesP-CPh₂]n with (tht)AuCI results in gold-containing macromolecules [Pl]mbMesP(AuCl)-CPh₂]n (14a and 14b). Upon dissolution in a polyisoprene selective solvent (n heptane), the metallated block copolymers assembled into micelles (14a: spherical; 14b: worm-like). The solution self-assemblies were examined by TEM and DLS.

View record

Living Anionic Polymerization of Phosphaalkenes. Controlled Routes to Homopolymers and Block Copolymers with Phosphorus Atoms in the Main Chain (2008)

No abstract available.

Master's Student Supervision (2010 - 2018)
Exploration of 2-aminophenol and 1,2-phenylenediamine ligands in hypervalent phosphorus(V) chemistry (2018)

Phosphoranes P(OC₆H₄NR)₂(OC₆H₄NHR) [R = Me (2.2a), Ph (2.2b), C6F5 (2.2c)] were synthesized by treating PCl5 with the respective 2–aminophenol derivative (2.1a–c, 3.1 equiv). In one instance, an intermediate species, P(OC₆H₄NR)₂Cl [R = Me (2.3a)], was isolated and structurally characterized. Deprotonation of the amine moieties (–NHR) in phosphoranes 2.2a and 2.2b with a strong alkali–metal base (e.g. n–BuLi) in the presence of a strong–donor solvent (e.g. THF) afforded salts composed of the hexacoordinate P(V)–anions [P(OC₆H₄NR)₃]– (R = Me, [2.4a]– ; Ph, [2.4b]–). Employing precursor 2.2a, the salt Li(THF)₃fac–[2.4a] was isolated. The X–ray crystal of each enantiomer was determined and, to our knowledge, represents the first structurally characterized example of a salt containing a hexacoordinate P(V)N₃O₃ anion featuring P(V)–N bonds. Efforts have also been made to synthesize analogous hypervalent P(V)–derivatives with 1,2–phenylenediamine ligands. Following the synthetic methodology to prepare phosphoranes 2.2a, 2.2b and 2.2c, preliminary investigations with three symmetrical 1,2–phenylenediamine derivatives (3.1a–c) were conducted. No evidence for the formation of five– or six–coordinate product was observed. Instead, an interesting phosphonium cation featuring a four–coordinate phosphorus(V) moiety was isolated as a chloride salt, P(OC₆H₄NR)₂Cl [R = Me (3.2b)], which was characterized spectroscopically.

View record

Phosphaalkene monomers and their polymerization (2018)

Living polymerization is a useful technique that is used to synthesize macromolecules with controlled architectures and tailor-made properties. Although this technique is widely used for the polymerization of organic monomers, the living polymerization of inorganic monomers is exceedingly rare. The prospect of synthesizing new inorganic-organic hybrid macromolecules with tailor-made structures is quite attractive due to the chemical functionality imparted by the inorganic moiety. Our group has developed the living anionic polymerization of Mes-P=CPh₂ to give chemically functional homo- and block-copolymers with phosphine moieties in the polymer backbone. Thus far, copolymers with styrene and isoprene have been prepared. In Chapter 2, the first poly(methylenephophine)-block-poly(methylmethacrylate) (PMP-b-PMMA) block copolymers will be reported. PMP-b-PMMA's with a variety of chain lengths have been synthesized and fully characterized by NMR spectroscopy, gel permeation chromatography (GPC) and matrix-assisted laser desorption-mass spectrometry (MALDI-MS). To fully understand the process of polymerization, the activation energy (Ea) was determined for the secBuLi-initiated polymerization of Mes-P=CPh₂ in nonpolar solvent toluene with TMEDA coordinator (Ea = 16.7 ± 0.7 kcal·mol-¹). In Chapter 3, a simple route to “masked” phosphaalkenes bearing P-Ar (Ar = aryl) and C-H substituents will be explored. The design of monomers bearing substituents smaller than Mesityl at phosphorus and phenyl at carbon, e.g. Mes-P=CPh2, poses considerable synthetic challenge. The present results will provide evidence that a masked phosphaalkene compound has been prepared as a transient species using a masked approach. The research included in this thesis extends the variety of phosphaalkene-based block copolymers that can be prepared. It also offers new perspectives in synthesis masked phosphaalkene compounds.

View record

Transition metal-containing Br�nsted acids as single component cationic initiators for olefin polymerization (2018)

No abstract available.

 

Membership Status

Member of G+PS
View explanation of statuses

Program Affiliations

Department(s)

 

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.