Sudip Shekhar

Associate Professor

Relevant Degree Programs

 

Graduate Student Supervision

Doctoral Student Supervision (Jan 2008 - May 2019)
Enabling practical deployment of silicon ring resonator-based systems (2018)

The full abstract for this thesis is available in the body of the thesis, and will be available when the embargo expires.

View record

Radio frequency CMOS : from ultra-high speed to ultra-low power (2018)

Over the last three decades, radio-frequency(RF) Complementary Metal-Oxide-Semiconductor(CMOS) electronics has made a huge impact in our world. Wireless Local Area Networks(WLANs), cellular networks, Global Positioning Systems(GPSs), and Bluetooth are a few examples where the impact of RF CMOS has led to rapid adoption and standardization of the technology. However, there still exists several challenging areas at the intersection of RF and CMOS where new paradigms must be established. This thesis summarizes the research to meet those goals as briefly described here: Research during the past decades provided CMOS solutions to RF applications that utilize the frequency spectrum up to 6 GHz. However, efficient system integration of mm-wave and THz in CMOS is still a challenging task. The THz spectrum is gaining interest due to its wider and less populated available spectrum, as well as its intriguing applications in molecular spectroscopy, imaging, and sensing. This band, although very useful, has been difficult to realize in hardware because of the limitations in CMOS electronics. In the first four chapters of this thesis, we investigate the challenge of implementing signal-sources at mm-wave and sub-THz frequencies using low-cost and versatile CMOS circuits, replacing the existing expensive solutions.Demand for embedded low-power electronics for wireless connectivity is growing due to the rapid proliferation of Internet-of-Things (IoT). Although Wireless Sensor Network(WSN) had been around for decades, some applications such as biomedical monitoring systems require ultra-low-power(ULP) and cost-effective wireless solutions. Research on energy-harvesting systems (e.g., RF energy harvesting, thermoelectric, etc.) and integrated-circuits(IC) bears the promise of medium-reach battery-free wireless connectivity solutions. In Chapters 5 and 6 of this thesis, multiple ULP wireless connectivity solutions for both commercial standards such as Bluetooth Low Energy(BLE) and custom-designed application-specific-radios are proposed and implemented in 40nm and 130nm CMOS technologies, respectively.Finally, application of RF electronics in power-electronics is studied in the last chapter. Although power-management integrated circuit is a well-developed field of research, PMICs still have existing bottlenecks (e.g., die area and output ripple) which can be addressed with the knowledge of RF electronics. In this thesis, feasibility of GHz-range converters is studied.

View record

Master's Student Supervision (2010 - 2018)
A differential push-pull voltage mode driver for vertical-cavity surface emitting laser (2018)

No abstract available.

Automatic tuning circuits for Mach-Zehnder interferometer optical switches (2018)

The full abstract for this thesis is available in the body of the thesis, and will be available when the embargo expires.

View record

Transformer-enhanced high-performance voltage-controlled oscillators (2018)

We show that, in comparison to an inductor, an asymmetric transformercan improve the quality factor (Q) of an inductor-capacitor (LC) tank whenthe tank loss is dominated by the varactor. Near, and at mm-wave frequencies,varactors in complementary metal-oxide-semiconductor (CMOS)processes have significantly lower Q than inductors and transformers. Directlyconnecting a varactor to the core of an LC oscillator lowers tank Q,and the increased ratio of parasitic capacitance to total tank capacitancelimits frequency tuning range (FTR). Instead, magnetically coupling a varactorto the oscillator core using an asymmetric transformer, where the coreis connected to the primary and varactor to the secondary, increases tankQ. Furthermore, it permits doubling the varactor bias range and reducingthe parasitic capacitance seen at the varactor. Thus, both FTR andPhase Noise (PN) are improved simultaneously. Measurement results fortwo prototypes in 65nm CMOS are presented. A 25 GHz Voltage-controlledOscillator (VCO) shows an FTR of 29.8%, a PN of -106.6 dBc/Hz at 1 MHzoffset, and an FTR-inclusive Figure of Merit (FoMT ) of -195.04 dBc/Hz. A60 GHz self-mixing VCO, where the VCO core at 20 GHz is mixed with itscommon-mode 40 GHz tone, shows an FTR of 18.5%, a PN of -98.9 dBc/Hzat 1 MHz offset, and an FoMT of -193.4 dBc/Hz.

View record

A broadband self-interference cancellation circuit for simultaneous full-duplex radio applications (2017)

All wireless communication systems so far have employed either time division duplexing (TDD), where the transmitter and receiver share the same frequency band but operate in orthogonal time slots, or frequency division duplexing (FDD), where the time slots are shared but orthogonal frequency bands are used.In order to meet the requirements for the upcoming 5G mobile standards, the concept of simultaneous full-duplex is being actively pursued, where both time slots and frequency bands can be shared between the transmitter and the receiver. The greatest hurdle in achieving full-duplex communication is the self-interference from the transmitter that is several orders of magnitude stronger than the desired signal at the receiver. Realizing such broadband cancellation has been hitherto very challenging, because not only does it demand broadband cancellation in amplitude, phase and group delay of the echo signals, but also require such a cancellation circuit to be linear, low-noise and ultra-compact for a mobile form factor. This work will demonstrate the first self-interference radio-frequency cancellation circuit that achieves an 80 MHz linear time evolution (LTE) cancellation bandwidth in a linear, tunable, compact, and fully monolithic integrated circuit (IC) implementation for such full-duplex radios. A proof-of-concept prototype is realized in 0.13 µm complementary metal oxide semiconductor (CMOS) process that utilizes techniques such as frequency translations and baseband Hilbert transforms to attain a measured 23 dB of self-interference cancellation over an 80MHz signal bandwidth. The entire circuit consumes 34 mW from a 1.2V supply in an active area of just 0.84 mm².

View record

Current Students & Alumni

 
 

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.