Mi Jung Park

Assistant Professor

Relevant Thesis-Based Degree Programs


Graduate Student Supervision

Master's Student Supervision

Theses completed in 2010 or later are listed below. Please note that there is a 6-12 month delay to add the latest theses.

Differentially private neural tangent kernels for privacy-preserving data generation and distillation (2024)

With the increasing interest in Deep Learning, data safety issues have become more prevalent as we rely more on Artificial Intelligence. Adversaries can easily obtain sensitive information through various attacks, this dramatically discourages patients and clients from contributing invaluable data that may be beneficial to research. This problem facilitates the need for a gold standard privacy notion. In recent years, Differential Privacy (DP) has been recognized as a gold standard notion of privacy. Among the current popular DP methods, Maximum mean discrepancy (MMD) is a particularly useful distance metric for differentially private data generation. When used with finite-dimensional features it allows us to summarize and privatize the data distribution once, which we can repeatedly use during generator training without further privacy loss. An important question in this framework is, then, what features are useful to distinguish between real and synthetic data distributions, and whether those enable us to generate quality synthetic data. This work considers using the features of neural tangent kernels (NTKs), more precisely empirical NTKs (e-NTKs). We find that, perhaps surprisingly, the expressiveness of the untrained e-NTK features is comparable to that of the features taken from pre-trained perceptual features using public data. As a result, our method improves the privacy-accuracy trade-off compared to other state-of-the-art methods, without relying on any public data, as demonstrated on several tabular and image benchmark datasets. In addition, we also extend NTK to Data Distillation (DD) in federated learning (FL) settings, where we aim to condense sensitive information into a small set of images for deep learning training in a DP manner, we show that our method obtains meaningful results even under class imbalance and spuriously correlated image datasets.

View record


Membership Status

Member of G+PS
View explanation of statuses

Program Affiliations


If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.


Follow these steps to apply to UBC Graduate School!