Xuesen Dong

Associate Professor

Research Classification

Hormone Dependent Cancers
Prostate Cancer
Endocrine Regulation
Gene Regulation and Expression
Prematurity

Relevant Degree Programs

 

Research Methodology

Prostate Cancer
androgen signaling
RNA splicing
progesterone signaling

Recruitment

Complete these steps before you reach out to a faculty member!

Check requirements
  • Familiarize yourself with program requirements. You want to learn as much as possible from the information available to you before you reach out to a faculty member. Be sure to visit the graduate degree program listing and program-specific websites.
  • Check whether the program requires you to seek commitment from a supervisor prior to submitting an application. For some programs this is an essential step while others match successful applicants with faculty members within the first year of study. This is either indicated in the program profile under "Requirements" or on the program website.
Focus your search
  • Identify specific faculty members who are conducting research in your specific area of interest.
  • Establish that your research interests align with the faculty member’s research interests.
    • Read up on the faculty members in the program and the research being conducted in the department.
    • Familiarize yourself with their work, read their recent publications and past theses/dissertations that they supervised. Be certain that their research is indeed what you are hoping to study.
Make a good impression
  • Compose an error-free and grammatically correct email addressed to your specifically targeted faculty member, and remember to use their correct titles.
    • Do not send non-specific, mass emails to everyone in the department hoping for a match.
    • Address the faculty members by name. Your contact should be genuine rather than generic.
  • Include a brief outline of your academic background, why you are interested in working with the faculty member, and what experience you could bring to the department. The supervision enquiry form guides you with targeted questions. Ensure to craft compelling answers to these questions.
  • Highlight your achievements and why you are a top student. Faculty members receive dozens of requests from prospective students and you may have less than 30 seconds to peek someone’s interest.
  • Demonstrate that you are familiar with their research:
    • Convey the specific ways you are a good fit for the program.
    • Convey the specific ways the program/lab/faculty member is a good fit for the research you are interested in/already conducting.
  • Be enthusiastic, but don’t overdo it.
Attend an information session

G+PS regularly provides virtual sessions that focus on admission requirements and procedures and tips how to improve your application.

 

Doctoral students
Postdoctoral Fellows
Any time / year round

1) neuroendocrine prostate cancer; 2) AR driven castrate-resistant prostate cancer 3) drug screening novel DNA topoisomerase II inhibitors 4) cell free nucleotide biomarkers from liquid biopsy

I support public scholarship, e.g. through the Public Scholars Initiative, and am available to supervise students and Postdocs interested in collaborating with external partners as part of their research.
I support experiential learning experiences, such as internships and work placements, for my graduate students and Postdocs.
I am open to hosting Visiting International Research Students (non-degree, up to 12 months).
I am interested in hiring Co-op students for research placements.

Graduate Student Supervision

Doctoral Student Supervision (Jan 2008 - Mar 2019)
Investigating the roles of SRRM4 in contribution to neuroendocrine prostate cancer progression (2018)

While androgen receptor pathway inhibition (ARPI) has significantly increased the survival of metastatic prostate adenocarcinoma (AdPC), accumulating evidence suggests that AdPC can change to a more aggressive subtype, called treatment-induced neuroendocrine prostate cancer (t-NEPC). T-NEPC is androgen receptor (AR) indifferent, and shows a neuroendocrine-like phenotype. Few targeted therapy is currently available for t-NEPC. It is imperative to identify biomarkers for early detection of t-NEPC and molecular targets for drug development.In this work, using whole transcriptome sequencing on t-NEPC from two independent patient cohorts, we have identified a t-NEPC specific splice signature that is predominantly controlled by the RNA splicing factor, serine/arginine repetitive matrix 4 (SRRM4). We have found that SRRM4 is highly expressed in t-NEPC and is strongly correlated with t-NEPC biomarker expression. Significantly, we have, for the first time, shown that SRRM4 can transform LNCaP adenocarcinoma cells into t-NEPC xenografts. We also confirmed that one of SRRM4 target genes was the RE1 silencing transcription factor (REST), a key regulator of neurogenesis. Moreover, The ARPI combined with a gain of SRRM4-induced adenocarcinoma cells to assume multicellular spheroid morphology, and this was essential in establishing progressive NEPC xenografts. We also identified a BHC80 splice variant, BHC80-2, that functions as a key facilitator of t-NEPC development. Functionally reprogrammed by the SRRM4, BHC80-2 does not confer the NEPC phenotype to cancer cells, but rather stimulates cell proliferation and invasion to accelerate tumor progression. In contrast to the epigenetic role of BHC80 in histone demethylation, we defined a novel non-epigenetic action of BHC80-2, whereby cytosolic BHC80-2 proteins trigger the MyD88-p38-TTP pathway to increase the RNA stability of a set of tumor-promoting cytokines. Blocking BHC80-2 signaling suppresses NEPC cell spheroid growth, identifying BHC80-2 as a potential therapeutic target for t-NEPC.Overall, my doctoral studies confirmed that SRRM4 is both a biomarker and a driver of t-NEPC by regulating tumor cell growth and metastasis in addition to its previously reported roles in neuroendocrine differentiation. Our studies not only enhance our understanding of the mechanisms of NEPC development, but also provide insights for personalized medicine-based strategies for prostate cancer patients.

View record

Utilizing catalytic Topo II inhibitor to target reestablished androgen receptor signaling in castration-resistant prostate cancer (2017)

Prostate cancer, the most common malignancy in Canadian men, is a leading cause of cancer-related male mortality. Androgen deprivation therapy is the first-line treatment for advanced prostate cancer. However, a fatal relapse to androgen deprivation therapy is inevitable, which is often characterized by the establishment of an androgen-independent AR signalling that drives the disease to the lethal castration-resistant prostate cancer (CRPC) stage. Defining the mechanisms that promote the reestablishment of AR signaling including the androgen independence is important for therapy development and disease control. UDP-glucuronosyltransferase 2B17 (UGT2B17) is a key enzyme that maintains androgen homeostasis by catabolizing AR agonists into inactive forms and its expression has been reported to increase after antiandrogen treatment. Whether UGT2B17 plays a role in the progression of CRPC is unclear. In this work, we demonstrated that the higher expression of UGT2B17 protein is associated with higher Gleason scores, increased metastasis and CRPC progression in prostate tumors. The expression and activity of UGT2B17 were also higher in androgen-independent cell lines compared to androgen-dependent cell lines. Overexpression of UGT2B17 stimulated cancer cell proliferation, invasion, and xenograft progression to CRPC after prolonged androgen deprivation. Furthermore, UGT2B17 not only suppressed androgen-dependent AR transcriptional activity but also enhanced androgen-independent AR transcriptional activity, mainly through activating the c-Src kinase. These results indicate that the UGT2B17-Src-AR signaling contributes to the reestablished AR signaling and expedites CRPC progression and blocking the UGT2B17-Src-AR cascade will be beneficial for overcoming the resistance in CRPC patients. Accordingly, pharmacological targeting of the catalytic domain of DNA topoisomerase II (Topo II), which is known to be essential for AR-mediated transcriptional control, can completely block the transcriptional activity of reestablished AR, mutant ARs and AR splicing variants. Targeting Topo II also strengthened the efficacy of current anti-androgens in suppressing wild type AR activities. Furthermore, catalytic Topo II inhibitors inhibited CRPC and enzalutamide-resistant prostate cancer cell growth and xenograft progression.Overall, my doctoral thesis demonstrates that the UGT2B17-Src-AR signaling axis contributes to the reestablished AR signaling and expedites CRPC progression, and that applying catalytic Topo II inhibitors can block the transcriptional activity of reestablished AR signaling and suppress CRPC progression.

View record

Master's Student Supervision (2010-2017)
Implications of PI3K/AKT inhibition on REST protein stability and neuroendocrine prostate cancer (2017)

Treatment-induced neuroendocrine (NE) prostate cancer (t-NEPC) is an aggressive subtype of prostate cancer (PCa) that can arise as a consequence of rigorous androgen receptor pathway inhibition (ARPI) therapies now used to treat castration resistant disease (CRPC). While the PI3K/AKT pathway has been investigated as a co-therapeutic target with ARPI for advanced prostate adenocarcinoma, whether this strategy has implications on t-NEPC progressionremains unknown. Findings from this work indicate that PI3K/AKT inhibition alone reduces protein expression of the RE-1 silencing transcription factor (REST) and induces multiple NE markers in PCa cells. The loss of REST by PI3K/AKT inhibition is through protein degradation mediated by the E3-ubiquitin ligase β-TRCP and REST phosphorylations at the S1024, S1027, and S1030 sites. Since AR inhibition was previously reported to deplete REST, results from this project reveal that the combined inhibition of PI3K/AKT and AR further aggravates REST protein reduction. Upon profiling the transcriptomes of AKT inhibition, AR inhibition, and AKT/AR co-inhibition in the LNCaP cell model, Gene Set Enrichment Analysis (GSEA) shows that these transcriptomes are highly correlated with the REST-regulated gene signature. Co-targeting AKT and AR resulted in an even higher correlation comparing to those of single treatment. Comparing these transcriptomes to the RNA-seq gene signature of t-NEPC patients by GSEA, it was observed that adding AKT inhibition to AR blockade enhanced the expression of neurogenesis-related genes and resulted in a stronger and broader upregulation of REST-regulated genes specific to t-NEPC. Collectively, these results indicate that AKT pathway inhibition can induce NE transdifferentiation in PCa cells via REST protein degradation. It delineates a potential risk for the AR and PI3K/AKT co-targeting strategy as it may further facilitate t-NEPC development.

View record

The progesterone receptors in human prostate (2014)

The prostate composes of epithelium and stroma, both of which are kept in balance to maintain normal prostate function. The balance between epithelium and stroma can be disrupted by the abnormal growth of stromal cells which results in prostate diseases such as benign prostatic hyperplasia. The epithelial-stromal interaction plays important roles not only in normal prostate homeostasis maintaining but also in prostate cancer development and progression. In prostate tumor, cancer associated fibroblasts enhance the secretions of cytokines and growth factors to favor cancer cells growth and metastasis. Androgen receptors are reported to regulate the development and maintenance the function of prostate. Progesterone receptor (PR) which belongs to the same steroid hormone receptor family as androgen receptors are little known in prostate. PR was reported to express in prostate, but there is no clear conclusion about the localization and function of PR in human prostate. The objective of this thesis is to investigate the expression and function of PR in human prostate. Two PR isoforms, PRA and PRB, are detected in subsets of the human prostate stromal cells by applying immunohistochemistry assays. Both PR isoforms express specifically in human prostate stromal fibroblasts and smooth muscle cells. Both PRA and PRB are demonstrated to play an inhibitory role in prostate stromal cell proliferation. PR suppresses the expression of cyclin A, cyclinB and cdc25c to delay cell cycle. PRA and PRB are demonstrated to regulate different transcriptomes by gene microarray assay. Immunohistochemistry assays were applied to human prostate cancer tissue biopsies, and PR levels are detected to decrease in the cancer associated stroma compared to the paired normal stroma. The conditioned media from PR positive stromal cell inhibit PC-3 and C4-2B cell motility through down-regulating the secretion of stromal cell derived factor 1 and interleukin 6. We conclude that PRA and PRB express in prostate stromal cells and inhibit the stromal cells proliferation. Decreased expression of PR in cancer associated stroma contributes to prostate tumor progression.

View record

 

Membership Status

Member of G+PS

Location

Vancouver General Hospital
 

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.