Michael Gold

Professor

Relevant Degree Programs

 

Graduate Student Supervision

Doctoral Student Supervision (Jan 2008 - May 2019)
The Rap GTPases coordinate actin and microtubule cytoskeleton reorganization, and promote antigen extraction at the B cell immune synapse (2018)

No abstract available.

Ecm-cell adhesion-dependent control of cancer progression genes (2016)

Interactions with the extracellular matrix (ECM) are critical for tumor cell survival and dissemination. Cell-ECM interactions are mediated primarily by integrins, cell surface receptors that nucleate the formation of adhesomes. Adhesome complexes contain signaling proteins as well as proteins that link integrins to the cytoskeleton, thereby transducing extracellular forces into the cell. Both altered ECM composition and altered adhesome signaling can contribute to cancer progression. In this thesis I tested the hypothesis that ECM-integrin interactions drive cancer progression and that this depends on the adhesome proteins FAK and talin, and on mechanobiological tension.In chapter 3, I show that in B16F1 melanoma cells, the expression of three cancer signature genes, Cyr61, MUC18 and TRPM1, is strongly regulated by cell-ECM adhesion, independently of cytoskeletal tension. In chapter 4, I used global transcriptome profiling to compare gene expression changes caused by increased ECM ligand density versus cytoskeletal tension. These two perturbations regulated genes that belong to distinct pathways. Increasing ECM ligand density upregulated genes that are associated with adhesion, migration and ECM remodelling pathways, as well as the Hippo pathway, whereas applying mechanical stretch to the cells upregulated genes associated with metabolic pathways and the HIF-1 pathway. In chapter 5, I show that the regulation of the cancer signature genes is dependent on the adhesome proteins talin and FAK. Consistent with a role for talin in adhesome signaling, loss of talin had the same effect on MUC18 and TRPM1 mRNA levels as forcing B16F1 cells into suspension. Knocking down FAK however, regulated Cyr61 and MUC18 differently than knocking down talin.In chapter 6, I show that the two isoforms of talin, talin 1 and talin 2, differentially regulate expression of the three cancer signature genes and have different effects on B16F1 spreading, migration and in vivo tumor growth. Together, my findings illustrate the complexity of how changes in ECM-cell interactions, and subsequent adhesome signaling, influence processes that are critical for cancer progression.

View record

Cytoskeletal control of B cell receptor dynamics and signaling (2014)

The nucleation, polymerization, and depolymerization of actin filaments is spatially and temporally controlled in order to regulate cell motility, cell morphology, and protein organization within the plasma membrane. By limiting receptor diffusion, the submembrane actin cytoskeleton modulates the signaling output of receptors such as the B-cell antigen (Ag) receptor (BCR) that are activated by clustering. Restricting BCR mobility limits BCR-BCR collisions and the resultant ‘tonic’ signaling. Conversely, more dynamic actin filaments or F-actin clearance promotes BCR-BCR collisions and leads to a ‘primed’ state where the threshold for Ag-induced activation is reduced. In chapter 2, I show a mechanism of receptor cross-talk where microbial danger signals (TLR ligands) prime B cells for Ag-induced activation by enhancing actin dynamics. TLR signaling reduced BCR confinement, promoted BCR-BCR collisions and potentiated responses to low densities of membrane-associated Ags.The interaction of B-cells with antigen-presenting cells displaying membrane-Ags results in initial BCR signaling that promotes cell spreading and increases the probability of BCRs encountering Ag. This is coupled with increased BCR mobility and the formation of BCR microclusters that recruit and activate signaling enzymes. Cell spreading and BCR microcluster mobility require severing of cortical submembrane actin, a precursor to F-actin branching that drives cell spreading. In chapter 3, I show that BCR signaling increases actin dynamics and BCR microcluster formation by activating the actin-severing protein cofilin via a signaling pathway involving Rap GTPases.

View record

The role of Pyk2 and FAK in B cell migration, adhesion, and spreading (2010)

The ability of the B cell receptor (BCR) to stimulate integrin-mediated adhesion, and induce cytoskeletal reorganization and cell spreading enhances the ability of B cells to bind and respond to antigens (Ag). The proper localization and trafficking of B cells in the secondary lymphoid organs are also critical for B cells to encounter Ags and to be activated. Proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK) are related cytoplasmic tyrosine kinases that have been shown to regulate cell adhesion, morphology, and migration. However, their functions in B cells are not clear. The overall hypothesis of this thesis was that Pyk2 and FAK are downstream targets of BCR, integrin, and chemokine receptor signaling, and that they are involved in B cell morphological regulation, migration, and adhesion. I showed that the BCR and integrins collaborate to induce the phosphorylation of Pyk2 and FAK on key tyrosine residues, modifications that increase the kinase activity of Pyk2 and FAK. Activation of the Rap1 GTPase is critical for BCR-induced integrin activation and for BCR-induced reorganization of the actin cytoskeleton and I showed that inhibition of Pyk2 and FAK function by either gene knockdown or the use of chemical inhibitors impaired B cell spreading. Marginal zone (MZ) B cells are innate-like B cells that are responsible for T cell-independent responses to microbial pathogens. The proper localization of MZ B cells is dependent on integrated migration and retention signals provided by the stromal cells in the spleen. Because MZ B cells are not found in Pyk2-/- mice, I hypothesized that Pyk2 and FAK are involved in MZ B cell retention in the spleen. I showed that Pyk2 and FAK are required for MZ B cell migration and that Pyk2 is required for integrin-dependent adhesion in response to chemoattractant stimulation. Moreover, I found that FAK is involved in chemokine-induced Akt phosphorylation in MZ B cells. In summary, Pyk2 and FAK are downstream targets of the Rap GTPases and play a key role in regulating B cell morphology, migration, and adhesion.

View record

The role of Rap and phosphoinositide 3-kinase delta in B lymphocyte function (2009)

B cells eliminate pathogens by producing antibodies, activating other immune cells, and secreting cytokines. To carry out these functions, B cells must traffic from the bone marrow into the blood and then into secondary lymphoid organs to encounter antigens and become activated. As a result, B cell trafficking is highly regulated and critical for the activation of self-reactive B cells that contribute to autoimmunity and the spread of malignant B cells. The Rap GTPases regulate integrin activation and in chapter two I showed that Rap1 activation is required for B cell migration and adhesion. Because, lipid mediators including Sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) are potent regulators of cell adhesion and migration, I asked whether LPA regulates B cell adhesion and migration. I found that LPA reduces B cell migration by favoring strong integrin-mediated adhesion.Phosphatidylinositide 3-kinase (PI3K) controls multiple proteins that regulate cell motility, survival and activation. Therefore in the third chapter I investigated the role of p110δ, the major isoform of PI3K in B cells, in the activation, migration, and function of conventional and innate-like B cells. B-2 cells are involved in T cell-dependent antibody responses while B-1 and marginal zone (MZ) B cells are innate-like lymphocytes that mediate T cell-independent responses to microbial antigens. Importantly, these cells are also responsible for many antibody-mediated autoimmune diseases. I showed that p110δ is needed for the activation and chemotaxis of B-2, B-1 and MZ B cells. I also showed that the in vitro adhesion and in vivo localization of MZ B cells is dependent on p110δ activity. Interestingly, I found that p110δ activity is needed for Rap1 activation, making p110δ a key regulator of B cell trafficking. B-1 and MZ B cells produce natural antibodies in the absence of immunization that often recognize self-antigens. We showed that the production of natural antibodies, both protective and pathogenic, depends on p110δ activity and that p110δ inhibition can reduce the levels of pathogenic auto-antibodies in collagen-induced arthritis.This work suggests that by regulating Rap, p110δ, or LPA, it may be possible to control B cell-mediated diseases including inflammation, autoimmunity, and cancer.

View record

The role of the Rap GTPases in B-cell morphology, function, and malignancy (2009)

B-lymphocytes rearrange their cytoskeleton and undergo dramatic morphological changes when searching for antigens and when forming immune synapses upon contacting cells that display antigens on their surface. Although these morphological changes are essential to B cell function, the signaling pathways underlying these processes are not fully understood. The aim of this thesis is to investigate how B cell receptor (BCR) and integrin signaling regulate B cell morphological changes. The Rap GTPases (Rap) are molecular switches that regulate integrin activation, adhesion, migration in B cells and other cell types. I hypothesize that activation of the Rap GTPases is important for regulating changes in B cell morphology. Indeed, in this thesis I showed that activation of Rap is essential for B cell cytoskeletal rearrangements. I found that Rap activation is important for BCR- and lymphocyte function-associated antigen-1 (LFA-1)-induced spreading, for BCR-induced immune synapse formation, and for particulate BCR ligands to induce localized F-actin assembly and membrane process extension. Rap activation and F-actin assembly were also required for optimal BCR signaling in response to particulate antigens leading to B cell activation. Consistent with Rap activation being important for B cell adhesion and migration, I showed that Rap activation is important for the dissemination of B cell lymphomas in vivo. B cell lymphomas are common malignancies in which transformed B cells enter the circulation, extravasate into tissues, and form tumors in multiple organs. Lymphoma cells are thought to exit the vasculature and enter tissues via the same chemokine- and adhesion molecule-dependent mechanisms as normal B cells. Using A20 murine B lymphoma cells, I showed that Rap activation is important for circulating lymphoma cells to invade tissue and form tumors in vivo in syngeneic mice. Moreover, using in vitro models I showed that Rap activation is required for these cells to extend membrane processes between vascular endothelial cells and undergo transendothelial migration. Thus, by controlling B cell morphology and cytoskeletal organization, the Rap GTPases play a key role in both malignant and normal B cell functions, and may be a potential therapeutic target for treatment of B cell-related diseases.

View record

Master's Student Supervision (2010 - 2018)
Characterization of processing bodies in T and B lymphocytes (2012)

Processing bodies (P-bodies) are cytoplasmic aggregates that contain translationally-repressed mRNAs in complex with repressor proteins (GW182, RCK/p54, and DCP1a), facilitate mRNA storage or degradation, and can be identified by the αGW-body (GWB) serum that detects several P-body proteins. The partitioning of mRNAs between a translationally-competent cytoplasmic pool and a translationally-repressed P-body pool could be an important mechanism for dynamically controlling the synthesis of key proteins. Memory CD8⁺ T lymphocytes contain translationally-repressed RANTES and IFN-γ mRNAs, enabling the secretion of these cytokines within 30 minutes of T cell receptor (TCR) engagement. Although P-bodies have not been characterized in lymphocytes, I hypothesized that storage of RANTES and IFN-γ mRNAs in P-bodies could contribute to the ability of memory CD8⁺ T cells to mount rapid recall responses. Using immunoblotting, flow cytometry, and confocal microscopy, I established that T and B lymphocytes contain GWBs and express GW182, RCK/p54, and DCP1a, which are concentrated in cytoplasmic granules. Co-localization analysis identified multiple subsets of P-bodies, raising the possibility that P-bodies with different protein compositions have distinct functional properties. Moreover, I found that P-bodies partially dissociate and move towards the model immune synapse in both T and B lymphocytes. To explore the role of P-bodies in the recall response, I utilized the OT-I model to generate effector and memory CD8⁺ T lymphocytes in vitro. Compared to naïve CD8⁺ T cells from OT-I mice, effector T cells had elevated levels of P-body proteins and a greater number of P-bodies. In contrast, memory T cells had similar numbers of P-bodies as naïve T cells, but contained larger GWBs and RCK/p54 granules. Remarkably, RANTES mRNA did not co-localize with P-bodies in memory T cells, but was distributed diffusely in the cytoplasm. Conversely, IFN-γ mRNA co-localized with GWBs and RCK/p54 granules in memory T cells. The abundance of P-body-targeting AU-rich elements (AREs) in IFN-γ mRNA and the absence of AREs in RANTES mRNA suggests that IFN-γ mRNA transcribed following activation of naïve T cells, is directed for storage into GWB⁺ RCK/p54⁺ P-bodies to be reused during the recall response, whereas RANTES mRNA is stored by an undefined P-body-independent mechanism.

View record

The Rap GTPases regulate B cell polarity and morphology by controlling the localization of Scribble and the activation of cofilin (2010)

Naïve resting B cells circulate throughout the body and enter secondary lymphoid organs (SLOs) in response to chemical cues known as chemokines. Within SLOs, B cells scan for foreign antigens, and antigen-induced clustering of the B cell receptor (BCR) initiates B cell activation. This clustering is enhanced through the formation of an immune synapse between the B cell and antigen presenting cell, which greatly amplifies BCR signaling and B cell activation. We have previously shown that activation of the Rap GTPases is important for the cytoskeletal changes that underlie B cell spreading, migration, and immune synapse formation. We have also shown that stimulating B-lymphocytes with a model particulate antigen, anti-BCR-coated polystyrene beads, causes cells to polarize and form actin-rich cups at sites of cell:bead contacts, and that the formation of these cups enhance B cell activation. Although a number of downstream targets of activated Rap (Rap-GTP) have been identified, the mechanisms by which Rap-GTP promotes cell polarization, actin polymerization, reorganization of the actin cytoskeleton, and changes in cell morphology are not completely understood.The establishment of cell polarity often involves complexes of evolutionarily conserved polarity proteins. One such polarity complex includes the Scribble protein. In this thesis, I show that Rap-GTP is important for generating an asymmetric distribution of Scribble when B cells encounter particulate antigens and form cups. The ability of leukocytes to assume a polarized morphology also requires that the cortical F-actin cytoskeleton be disassembled so that new F-actin filaments that contribute to the formation of a leading edge, F-actin-rich cup, or immune synapse can be assembled. Since cofilin plays a major role in severing and depolymerizing F-actin filaments, I tested the hypothesis that the Rap GTPases regulate changes in cell shape by controlling the activation of cofilin, a process that requires its dephosphorylation by the Slingshot phosphatase. I show that BCR clustering leads to cofilin dephosphorylation, and hence activation, which is dependent on activation of the Rap GTPases. This suggests that an early step underlying BCR-induced changes in B cell morphology that involve reorganization of the actin cytoskeleton is the Rap-dependent activation of the actin-severing protein cofilin.

View record

 
 

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.