Young-Heon Kim


Relevant Degree Programs


Graduate Student Supervision

Doctoral Student Supervision (Jan 2008 - Nov 2019)
On the structure of optimal martingale transport in higher dimensions (2016)

In the first part of this thesis, we study the structure of solutions to the optimal martingale transport problem, when the marginals lie in higher dimensional Euclidean spaces (ℝ^d, d ≥ 2). The problem has been extensively studied in one-dimensional space (ℝ), but few results have been shown in higher dimensions. In this thesis, we propose two conjectures and provide key ideas that lead to solutions in important cases.In the second part, we study the structure of solutions to the optimal subharmonic martingale transport problem, again when the marginals lie in higher dimensional Euclidean spaces. First, we show that this problem has an equivalent formulation in terms of the celebrated Skorokhod embedding problem in probability theory. We then describe the fine structure of the solution provided the marginals are radially symmetric. The general case remains unsolved, and its potential solution calls for a deeper understanding of harmonic analysis and Brownian motion in higher dimensional spaces.

View record

Master's Student Supervision (2010 - 2018)
Harnack inequality for nondivergent linear elliptic operators on Riemannian manifolds : a self-contained proof (2013)

In this paper, a self-contained proof is given to a well-known Harnack inequality of second order nondivergent uniformly elliptic operators on Riemannian manifolds with the condition that M-[R(v )]>0, following the ideas of M. Safonov [5]. Basically, the proof consists of three parts: 1)Critical Density Lemma, 2) Power-Decay of the Distribution Functions of Solutions, and 3)Harnack Inequality.

View record


Membership Status

Member of G+PS
View explanation of statuses

Program Affiliations


If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.


Learn about our faculties, research, and more than 300 programs in our 2021 Graduate Viewbook!