Paul Schaffer

Associate Professor

Relevant Degree Programs

Affiliations to Research Centres, Institutes & Clusters

 
 

Graduate Student Supervision

Doctoral Student Supervision (Jan 2008 - May 2021)
Nuclide production and imaging applications of ??uAc for targeted alpha therapy (2021)

Targeted alpha therapies using actinium-225 (²²⁵Ac, t₁/₂ = 9.9 d) can treat advanced metastatic disease, yet insufficient ²²⁵Ac availability limits their development (63 GBq/year is produced globally via ²²⁹Th generators). This thesis describes efforts to produce ²²⁵Ac and apply multi-nuclide SPECT imaging in preclinical evaluation of ²²⁵Ac-radiopharmaceuticals. Initial ²²⁵Ac production used ᴺᵃᵗU-spallation-produced and mass-separated ion beams, producing up to 8.6 MBq of ²²⁵Ra (an ²²⁵Ac parent) and 18 MBq of ²²⁵Ac. This material helped characterize the performance of ²²⁵Ac decay chain imaging on a microSPECT/PET/CT scanner in terms of contrast recovery, spatial resolution, and noise. Larger ²²⁵Ac quantities were produced via thorium target irradiation with a 438 MeV, 72 μA proton beam for 36 hours, producing (521 ±18) MBq of ²²⁵Ac and (91 ± 14) MBq of ²²⁵Ra. These irradiations enabled ²³²Th(p,x) cross sections measurements for ²²⁵Ac, ²²⁵Ra, and ²²⁷Ac: (13.3 ± 1.2) mb, (4.2 ± 0.4) mb, and (17.7 ± 1.7) mb, respectively. Thirty-five other cross sections were measured and compared to FLUKA simulations; measured and calculated values generally agree within a factor of two. Ac separation from irradiated thorium and co-produced radioactive by-products used a thorium peroxide precipitation followed by cation exchange and extraction chromatography. Studies showed this method separates Ac from most elements, providing a directly-produced Ac product (²²⁷˒²²⁵Ac†) with measured ²²⁷Ac content of (0.15 ± 0.04)%, a hazardous long-lived (t₁/₂ = 21.8 y) impurity with prohibitively low waste disposal limits. A second, indirectly-produced ²²⁵Ra/²²⁵Ac-generator-derived Ac product (²²⁵Ac*) with ²²⁷Ac content of
View record

Radiofluorinated amino acids for oncological positron emission tomography imaging (2020)

The full abstract for this thesis is available in the body of the thesis, and will be available when the embargo expires.

View record

Current Students & Alumni

This is a small sample of students and/or alumni that have been supervised by this researcher. It is not meant as a comprehensive list.
 

Membership Status

Partner appointment
View explanation of statuses

Program Affiliations

Department(s)

 

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.

 
 

Read tips on applying, reference letters, statement of interest, reaching out to prospective supervisors, interviews and more in our Application Guide!