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Why Mixed Models

Populations of measurements often fall naturally into groups

◮ patients from different hospitals participating in a medical study
◮ products from different production runs or batches
◮ repeated measures made on the same subject for a sample of

different subjects
◮ plants or animals observed at different times
◮ soil nutrients and contamination at different depths from

different sites



Sampling in groups may be an unavoidable part of the study but it
also may ensure:

◮ a large enough sample can be collected within a reasonable
time frame or budget

◮ results apply to a larger population of groups rather than to
just those in one particular group

Why Mixed Models continued

Linear and generalized linear models make the critical assumption
that the data to which they are fit consist of independent
observations

It is typical that measurements from the same group or unit are
more similar to one another than to observations made on different
groups or units.

◮ different levels of a grouping variable may have naturally higher
or lower response potential

◮ all measurements from the same cluster are exposed to that
cluster’s unique response potential

◮ measurements from the same cluster will tend to be more
similar to one another than they are to measurements from
different clusters that have different response potential

So data sampled in groups are typically not independent



Example: Orthodontic measurements over time

## Distance Age subject Sex

## 26.0 8 M01 Male

## 25.0 10 M01 Male

## 29.0 12 M01 Male

## 31.0 14 M01 Male

## 21.5 8 M02 Male

## 22.5 10 M02 Male

## 23.0 12 M02 Male

## 26.5 14 M02 Male

## 23.0 8 M03 Male

## 22.5 10 M03 Male

## 24.0 12 M03 Male

## 27.5 14 M03 Male

## 25.5 8 M04 Male

## 27.5 10 M04 Male

## 26.5 12 M04 Male

## 27.0 14 M04 Male

Inter-dependence of the within subject responses

Every subject has a slightly different distance, this affects all the
responses from the same subject, rendering the within subject
responses inter-dependent
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Random effects

Consider all possible levels of a grouping variable (hospitals in a
medical study, trees in a growth study)

◮ imagine that each level has a constant value associated with it
that gets added to the overall mean, raising or lowering it by a
unique amount

◮ this constant value is called the random effect of the level

Levels of a random effect used in a particular study are assumed to
have been sampled from a population of possible levels whereas
levels of a fixed effect are not

Assume they follow a normal distribution with mean zero

There can be more than one random effect in a given study. They
can be nested or crossed.

Recall for Linear models

We assume Y ∼ N(µ, σ2) and the data are independent

µ and σ2 are parameters that describe centre and spread of the
distribution respectively

We can shift the normal distribution without changing its shape

This allows us to split the data into 2 parts, one fixed, the other
random

◮ Yi = µ + εi

◮ µ is a fixed value and ε is the random error in our data

We assume ε ∼ N(0, σ2)

We can model both the fixed and random portions of our data



Fixed Effects Models

Regression, ANOVA, ANCOVA are all Fixed Effects Models

We model µ as a function of some predictors

Example: µij = a + bxij + Ti

xij is an observed numeric variable. a, b and Ti are fixed effects,
Ti is associated with the levels of an unspecified categorical variable.

εij is random described by a single parameter σ2

Approximately 95% of the errors will be between −2σ and 2σ

We assume the errors are independent

Example: Does Age affect Distance?

One possible model for looking at this: Distanceij = µ + Agei + εij

Age - fixed effect, “systematic” part of the model

ε - “error term”, “random” part of the model, represents the
deviations from the predictions due to “random” factors that cannot
be controlled, does not have any interesting structure

In Mixed Models:

◮ the “systematic” part of the model works just like with linear
models

◮ complexity/structure is added to the “random” part of the
model



Example continued

Another possible model: Distanceijk = µ + Sexi + Ageij + εijk

◮ Age is treated as a categorical factor with four levels
◮ Sex is an additional fixed effect

For this data:

◮ distance from the pituitary to the pterygomaxillary fissure
◮ Age of the subject (8, 10, 12 and 14) (within subject)
◮ Subject id: 27 in total
◮ Sex, Male (n=16) or Female (n=11) (between subject)

BUT this Fixed Effects Model (and the previous one) assumes the
“errors” are independent. This should not be assumed in this case
and so both these models should not be considered initially.

Ignoring lack of independence
Consider the extreme situation with g groups each containing m

observations where the m observations within each group are
identical but different between the groups:

◮ a single measure from each group provides complete knowledge
of that group

◮ multiple measurements in each group tell us nothing new and
so are redundant

◮ effectively have a sample size of g meaningful observations
◮ sample is effectively much smaller than it appears (n = g not g

x m)

If an analysis is done on all n observations assuming independence:

◮ variances for statistics will be too small
◮ resulting confidence intervals will be too narrow
◮ p-values will be smaller than they should be, inflating type I

error rate



Random Effects Models

Random Effects Models allow us to model the variance of our data
in a hierarchical way

Example: Suppose we want to measure aptitude of students using a
standard test. We need a sample of students to take the test:

◮ Randomly select some schools (i)
◮ Randomly select a set of classes within each school (j)
◮ Randomly select some students from each class (k)

The overall average score is µ

The school score is Yi = µ + γi

The class score is Yij = µ + γi + δij

The student score is Yijk = µ + γi + δij + εijk

Random Effects Models continued

Because we selected schools, classes and students randomly from a
larger group we treat these effects as random. The assumptions for
the random effects are

γ ∼ N(0, σ2
s ) (Between school variation).

δ ∼ N(0, σ2
c ) (Between class but within school variation).

ε ∼ N(0, σ2) (Between student but within class variation).

All random effects are independent

This model allows us to estimate how much variation in aptitude
score between students is due to the school they attend and the
class they are in



Mixed Effects Models

Mixed Effects Models combine both random and fixed effects into
one model

Usually the fixed effects are the parameters of greatest interest in
the model

The random effects serve to control for repeated measurements on
the same sampled unit or within the same cluster

The fixed effects can exist at any level of the hierarchy and are
tested at the appropriate level within the model

Mixed Effects Sodels do not require a balanced design which means
the model can easily handle missing data. This is a huge advantage
over traditional repeated measures ANOVA models.

Add fixed effects to our school example

Assume µijk = µ + Ai + Bij + Cijk , where

◮ A is the province where the school is located
◮ B is the time of the class (Morning or Afternoon)
◮ C is the gender of the student

Province varies between schools, Time varies within school but
between class, and Gender varies within class but between student

Our mixed effects model is
Yijk = µ + Ai + Bij + Cijk + γi + δij + εijk

Gender is tested at the student level, Time at the class level and
Province at the school level



Example: Does Age affect Distance?

Distanceij = µ + Ageij + subjecti + εij

◮ gives some structure to the random “error” part of the model
◮ characterizes variation due to differences between subjects
◮ general error term ε still needed for the random noise that isn’t

due to differences between subjects

Mixed model - a model with a mix of fixed and random effects

Does Age affect Distance?
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Lets fit distance as a function of Age and subject (ignoring gender
for now)

◮ The first model uses fixed effects only, treating Age and
Subject as fixed effects

◮ The second model treats subject as a random effect



Fixed Effects Model for within Subject factor

Distanceij = µ + Ageij + Subjecti + εij

## Anova Table, Response = distance

## Df Sum Sq Mean Sq F value Pr(>F)

## Age 3 237.19 79.064 38.0396 2.986e-15

## Subject 26 518.38 19.938 9.5925 3.375e-15

## Residuals 78 162.12 2.078

## Estimate Std. Error t value

## (Intercept) 22.185 0.277 79.96

## Age10 0.981 0.392 2.50

## Age12 2.463 0.392 6.28

## Age14 3.907 0.392 9.96

Mixed Effects Model for within subject factor

Distanceij = µ + Ageij + subjecti + εij

## Anova Table, Response = distance

## NumDF DenDF F.value Pr(>F)

## Age 3 78 38.04 2.998e-15

Random effects:

## Var SD

## subject 4.465 2.113

## Residual 2.078 1.442

◮ shows how much variability in Distance there is due to subject
◮ “Residual” is the variability not due to differences between

subjects



Fixed effects:

## Estimate Std. Error df t value

## (Intercept) 22.185 0.492 43.4 45.07

## Age10 0.981 0.392 78.0 2.50

## Age12 2.463 0.392 78.0 6.28

## Age14 3.907 0.392 78.0 9.96

Age 8 is the reference level so Distance at Age 8 = 22.185

Distance at Age 10 = 22.185 + 0.981

The higher the age the longer the Distance

t value = Estimate / Std. Error

Comparing the results

The results from the 2 models are identical except for the error
associated with the Intercept

Age is a within subject factor so the ANOVA test for Age and the
estimated effects are the same as for the Mixed Model results. If the
design was unbalanced the results would be similar but not the
same.

In the Fixed Effects Model, we can compute the variance
components using the expected means squares of the ANOVA table.
This is non-trivial if the design is unbalanced.

In the Mixed Effects Model, we get the variance components directly



Models with only between subject factors

In order to control for repeated measures, we have to average the
response over subject before we can use a Fixed Effects Model

If we do not average, we will overstate the significance of our
between subject factor

Distanceij = µ + Sexi + εij

## Anova Table, Response = Distance

## Df Sum Sq Mean Sq F value Pr(>F)

## Sex 1 140.46 140.465 19.157 2.831e-05

## Residuals 106 777.23 7.332

## Estimate Std. Error t value

## (Intercept) 24.97 0.338 73.77

## SexFemale -2.32 0.530 -4.38

Models with only between subject factors continued

## Anova Table, Response = average Distance

## Df Sum Sq Mean Sq F value Pr(>F)

## Sex 1 35.116 35.116 9.2921 0.005375

## Residuals 25 94.479 3.779

## Estimate Std. Error t value

## (Intercept) 24.97 0.486 51.38

## SexFemale -2.32 0.761 -3.05



Mixed Effects Model approach

Distanceij = µ + Sexi + subjecti + εij

Mixed effects Model works without having to average and is
accurate even if there is imbalance over the subjects

## Anova Table, Response = Distance

## NumDF DenDF F.value Pr(>F)

## Sex 1 25 9.2921 0.005375

## Var SD

## subject 2.547 1.596

## Residual 4.930 2.220

## Estimate Std. Error df t value

## (Intercept) 24.97 0.486 25 51.38

## SexFemale -2.32 0.761 25 -3.05

Both within and between subject factors in the model

For fitting a Fixed Effects only model, we cannot average over
subject if there is a within subject factor in the model

If we do not average, the Fixed Effects Model won’t realize that Sex
is a between subject factor and so it won’t be tested using the
between subject variability (Subject). It will mistakenly use the
within subject variability (Residuals) instead. This will overstate the
significance of Sex.

Distanceij = µ + Sexi + Ageij + Subjecti + εij

## Anova Table, Response = Distance

## Df Sum Sq Mean Sq F value Pr(>F)

## Age 3 237.19 79.064 38.040 2.986e-15

## Sex 1 140.46 140.465 67.581 3.513e-12

## Subject 25 377.91 15.117 7.273 6.062e-12

## Residuals 78 162.12 2.078



Using repeated measures ANOVA instead

This model works and is correct because we have complete data. If
some subjects were not observed at all ages, this model could not
be used.

##

## Error: Subject

## Df Sum Sq Mean Sq F value Pr(>F)

## Sex 1 140.5 140.46 9.292 0.00538

## Residuals 25 377.9 15.12

##

## Error: Within

## Df Sum Sq Mean Sq F value Pr(>F)

## Age 3 237.2 79.06 38.04 2.99e-15

## Residuals 78 162.1 2.08

Mixed Effects Model approach
Distanceij = µ + Sexi + Ageij + subjecti + εij

## Anova Table, Response = Distance

## NumDF DenDF F.value Pr(>F)

## Age 3 78 38.040 2.998e-15

## Sex 1 25 9.292 0.005375

## Var SD

## subject 3.260 1.805

## Residual 2.078 1.442

## Estimate Std. Error df t value

## (Intercept) 23.131 0.542 38 42.66

## Age10 0.981 0.392 78 2.50

## Age12 2.463 0.392 78 6.28

## Age14 3.907 0.392 78 9.96

## SexFemale -2.321 0.761 25 -3.05



Within subject factor model if data is not balanced

Fixed Effects Model

## Anova Table, Response = Distance

## Df Sum Sq Mean Sq F value Pr(>F)

## Age 3 195.04 65.014 27.9560 1.949e-11

## Subject 26 446.74 17.182 7.3884 9.542e-11

## Residuals 60 139.54 2.326

Mixed Effects Model

## Anova Table, Response = Distance

## NumDF DenDF F.value Pr(>F)

## Age 3 61.066 29.532 6.369e-12

Between subject factor model if data is not balanced
Fixed Effects Model on average observation

## Anova Table, Response = average Distance

## Df Sum Sq Mean Sq F value Pr(>F)

## Sex 1 40.479 40.479 10.388 0.003512

## Residuals 25 97.419 3.897

Mixed Effects Model on raw data

## Anova Table, Response = Distance

## NumDF DenDF F.value Pr(>F)

## Sex 1 24.818 9.3844 0.005209

Mixed effects takes variation in sample size into account. Result is
more accurate.

Interpretation of results is different



Together in a Mixed Effects Model

## Anova Table, Response = Distance

## NumDF DenDF F.value Pr(>F)

## Age 3 61.892 29.740 4.972e-12

## Sex 1 24.928 10.285 0.003661

## Var SD

## subject 3.240 1.800

## Residual 2.322 1.524

## Estimate Std. Error df t value

## (Intercept) 23.16 0.568 40.6 40.75

## Age10 1.16 0.478 62.6 2.42

## Age12 2.53 0.471 61.3 5.37

## Age14 3.92 0.437 61.1 8.98

## SexFemale -2.50 0.779 24.9 -3.21

Significance Testing
Unlike for Fixed Effects Models, Mixed Model parameters do not
have nice asymptotic distributions to test against (no longer chi
squared or F)

◮ inference on the parameters of a Mixed Effects Model rely on
approximate distributions

◮ treat p-values with caution

Profiled confidence interval

◮ an interval which does not contain zero indicates the parameter
is significant

Most reliable inferences for Mixed Models are done with Markov
Chain Monte Carlo (MCMC) and parametric bootstrap tests

◮ both are computationally expensive and require longer run
times

◮ parametric bootstrap is more intuitive and easier to generally
apply



More on Mixed Effects Models

Suppose we have Yij = µ + γi + δij being the jth observation on the
ith subject

γ ∼ N(0, σ2

B) and δ ∼ N(0, σ2

W )

We can compute the correlation between observations on the same
and different subjects

Cor(Y1,1, Y2,1) = Cor((γ1 + δ11), (γ2 + δ21)) = 0

Cor(Y1,1, Y1,2) = Cor((γ1 + δ11), (γ1 + δ12)) =
σ

2

B

σ
2

B
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W

Observations on the same subject are correlated. This correlation is
taken into account in Mixed Effects Models.

More than 1 Random Effect (Hierarchical or Crossed
models)

We’ve demonstrated that we can fit 2 levels of data in the same
model using a Mixed Effects Model where each level is defined by a
random effect

A hierarchical model requires the random effects be nested to create
a hierarchy

Yijk = µ + γi + δij + εijk

However, random effects can also be crossed

Yijk = µ + γi + δj + εijk



Example: Student evaluation of Instructors
Students rate their lectures between 0 and 100. Each lecture is rated
by multiple students and each student can rate multiple lectures.

The dataset has 21446 ratings from 2487 students. The lectures
were taught by 318 instructors from 3 different departments. The
goal is to test for a difference between departments and course type
(service or not).

## Student Instructor dept service Score

## 1 1050 6 TRUE 35

## 3 494 9 TRUE 73

## 3 696 9 TRUE 29

## 7 588 4 TRUE 82

## 7 1843 4 TRUE 96

## 8 53 9 TRUE 62

## 9 281 6 TRUE 81

## 9 1770 6 TRUE 7

## 12 873 9 TRUE 47

Example continued
We need to account for repeated observations on the instructor and
repeated observations by the student

## ANOVA Table, Response = Score

## NumDF DenDF F.value Pr(>F)

## service 1 4293.1 39.305 3.983e-10

## dept 2 350.1 4.839 0.008452

## service:dept 2 3976.8 6.897 0.001023

## Est Std.Err df t.val Pr(>|t|)

## (Intercept) 54.7 1.2 501.3 46.2 0.000

## serviceTRUE -4.5 0.9 2331.9 -5.0 0.000

## dept4 2.4 1.6 521.4 1.5 0.137

## dept9 1.2 1.9 421.0 0.6 0.526

## serviceTRUE:dept4 3.7 1.3 3070.6 2.9 0.004

## serviceTRUE:dept9 -1.4 1.5 4471.9 -0.9 0.344



The fixed effects

The estimated group means are below:

## service dept Estimate SE DF

## FALSE 6 54.7 1.19 501

## TRUE 6 50.3 1.17 453

## FALSE 4 57.1 1.07 560

## TRUE 4 56.3 1.14 700

## FALSE 9 55.9 1.45 376

## TRUE 9 50.0 1.55 465

The fixed effects show that the lecture ratings are similar for Dept 6
and 9 but are higher for Dept 4. In general service courses receive a
lower rating within the 3 departments.

The random effects and correlations

The variance components of the model are below:

## Var SD

## Student 49.72 7.051

## Instructor 98.35 9.917

## Residual 584.85 24.184

Observations from difference students on different instructors are
uncorrelated

Same student on different instructors: ρ = 49.72

584.85+49.72
= 0.08

Different students on same instructor: ρ = 98.35

584.85+98.35
= 0.14

Each instructor/student combination appeared only once in the
dataset so there is no same student same instructor correlation
estimate



Testing Random Effects
Is the variance explained by the random effect significant?

Test the random effects using a likelihood ratio test

Refit the the model without a random effect and evaluate the
change in the likelihood

## Likelihood ratio test for Student random effect

## Chisq Chi Df Pr(>Chisq)

## 531.75 1 < 2.2e-16

## Likelihood ratio test for Instructor random effect

## Chisq Chi Df Pr(>Chisq)

## 2508.5 1 < 2.2e-16

Test is approximate and overestimates the p-value (conservative)

Conclusions won’t change for a more accurate test if the p-value is
small enough to be significant

Mixed Effects model for non-normal responses

For distributions other than the normal model, we cannot separate
the mean from the variance. The two are related.

Model parameters are related to some function of the mean (link
function)

Dist Link Variance Dist Link Variance

Poisson log(µ) µ NB log(µ) µ + µ2/r

Binomial logit(µ) µ(1 − µ) NB log(µ) τ2µ

In this case we put the random effects within the link function

g(µij) = α + βxij + γi where γi ∼ N(0, σ2)



Example: Contagious bovine pleuropneumonia (CBPP)
Blood samples collected quarterly to look at changes in CBPP over
time

We have repeated measures on herd of zebu cattle in Ethiopia.
There are 15 herds with 3 or 4 repeated measures. The response is
the number of cattle with CBPP.

## herd incidence size period

## 1 2 14 1

## 1 3 12 2

## 1 4 9 3

## 1 0 5 4

## 2 3 22 1

## 2 1 18 2

## 2 1 21 3

## 3 8 22 1

## 3 2 16 2

## 3 0 16 3

## 3 2 20 4

## 4 2 10 1

Example continued

logit(µij) = α + Periodij + herdi where herdi ∼ N(0, σ2)

Test the hypothesis that the odds for CBPP are the same in all four
periods

## Likelihood Ratio Test

## Df LRT Pr(Chi)

## period 3 25.61 1.151e-05

## Var SD

## herd 0.4123 0.6421



Example continued

The odds of incidence for periods 2 to 4 are smaller than for period 1

The odds of CBPP status:

period 1 e−1.398 = 0.25, 1

0.25
= 4

period 2 e−1.398+−0.992 = 0.09, 1

0.09
= 11

The odds ratio of CBPP status:

period 2 to 1 e−0.992 = 0.37, 1

0.37
= 2.7

period 3 to 1 e−1.128 = 0.32, 1

0.32
= 3.1

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -1.398 0.231 -6.05 1.47e-09

## period2 -0.992 0.303 -3.27 1.07e-03

## period3 -1.128 0.323 -3.49 4.74e-04

## period4 -1.580 0.422 -3.74 1.82e-04
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