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Our data

We assume our data is drawn at random from a probability
distribution.

The data have a mean and a variance and variables can be
correlated.

If X and Y are our samples from 2 groups .

◮ The means are denoted by µx and µy

◮ The variances are denoted by σ2
x and σ2

y

◮ The covariance is denoted by σxy

◮ The correlation is ρ =
σxy

σx σy
is a number between -1 and 1.

Properties of the mean and variance

The mean of the sum is the sum of the mean.
µx+y = µx + µy

The mean of the difference is the difference of the mean.
µx−y = µx − µy

The variance of the sum is usually not the sum of the variance.
σ2

x+y = σ2
x + σ2

y + 2σxy

The variance of the difference is not the difference of the variances.
σ2

x−y = σ2
x + σ2

y − 2σxy

If X and Y are independent then the covariance (σxy ) and
correlation (ρxy ) = 0



The 2 group experimental setup

We have a random sample of data from 2 populations
(observational study) or from a population randomized into 2
groups (controlled experiment).

We measure a variable of interest on each member of the sample
and want to determine if the mean of that variable is different in the
two groups.

Group 1: X = x1, . . . , xn are iid F1(µx , σ2
x )

Group 2: Y = y1, . . . , ym are iid F2(µy , σ2
y )

iid means Independent Identically Distributed

Estimating the parameters from the sample

We use the sample average to estimate the group mean.

µ̂x = x̄ =
∑n

1 xi/n

We use the sample variance to estimate the group variances.

σ̂2
x = s2

x =
∑n

1(xi − x̄)2/(n − 1)

Usually the groups are independent samples which means the data
are independent.

If the data are paired (n = m), we can estimate the covariance
between the variables which allows us to compute the correlation.

σ̂xy = sxy =
∑n

1(xi − x̄)(yi − ȳ)/(n − 1)



Significance testing

We compare the means of the two group by a hypothesis test.

A hypothesis test consists of a Null hypothesis (H0) and an
alternative hypothesis (H1).

We compute a test statistic and a p-value based on our data. If our
p-value is less than α we reject the Null hypothesis in favour of the
alternative (H1).

α specifies the chance of a Type 1 error or a false positive result. If
we set α = 0, we will never reject H0.

Sample Size and Power calculations

α (or significance) is the probability of rejecting H0 when it is true.
It does not depend on the sample size.

1 − β (or power) is the probability of rejecting H0 when it is false.
As N increases so does the power.

Power or sample size calculations require you to fully specify the
true parameters of the model.

2 sample t-test with equal variance
n = (2σ2/∆2) ∗ (z(1−α/2) + z(1−β))

2

Software to calculate sample size or power is available. For a list of
software see Wikipedia (Statistical Power).



The distribution of the sample mean.

With a large sample size the sample average will converge to a
normal distribution (bell curve) for almost any distribution of the
original data.

√
n(x̄ − µx )

d→ N(0, σ2
x )

How quickly it converges depends on the distribution of data.

On line Example

Since the t-test is based on sample averages, this property makes it
very robust to the normality assumption if the sample size is
reasonably large.

t-test for two uncorrelated samples

Stated assumptions:

◮ Data are normally distributed
◮ equal variance in the two groups
◮ data are independent

The Null Hypothesis is the group means are equal (H0 : µx = µy ).

The alternative is usually H1 : µx Ó= µy .

What happens if the assumptions are violated?

We can test this by simulating data and computing the p-value.

If we plot the p-values against the quantiles of a uniform
distribution we should get a straight line.



This is a Γ(1, 1/10) distribution
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Equal variance assumption violated

n samples X ∼ N(0, 1) versus m samples Y ∼ N(0, 100)
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Conclusions about 2 sample t-tests.

The independence assumption is critical for the t-test to be valid.

◮ If the data within a group are not independent then the
dependence must be estimated and adjusted for.

The equal variance assumption is not critical if the sample size in
each group is similar.

◮ If the variances and the sample sizes in the two groups are
different, the Welch’s t-test can used instead.

The normality assumption is not critical for the t-test and can
essentially be ignored.

◮ Violation of this assumption can affect the power of the test.
◮ If data is skewed either transform or use an alternative test.

Paired t-test

Paired data means for each x there is a specific y related to it.

This usually means there is correlation (ρxy Ó= 0).

We need to adjust for the correlation by using a paired t-test.

This should be a standard test in most statistical software.

If we take the difference in the observed values in each pair, a paired
t-test becomes a one sample t-test.

We compute zi = xi − yi then test if µz = 0.



Non-Parametric tests

Non-parametric tests can be used as an alternative to a two-sample
or paired t-test.

◮ Two-sample t-test -> Wilcoxon rank sum test

Wilcoxon test is the same as Mann-Whitney U test

◮ Paired t-test -> Wilcoxon signed rank test

Wilcoxon tests makes similar assumptions as the t-test except for
normality.

Two sample t-test versus wilcoxon rank sum test

The key factor in choosing between a t-test and a Mann-Whitney
test is the statistical power under the alternative hypothesis.

◮ For symmetric data, including the normal distribution, the
t-test is slightly more powerful than the Mann-Whitney test.

◮ If the data are skewed, the Mann-Whitney test can be
substantially more powerful than the t-test.

◮ t-test only reject H0 if the group means are different.

◮ The Mann-Whitney test can reject the Null for reasons other
than a difference in the group means.



Sample distributions

Normal Uniform

Gamma (Low Skew) Gamma (High Skew)

Power of the two sample t-test vs Mann-Whitney

We can compare the power of the two tests by simulation.

In all distributions µ1 − µ2 = 2, σ2 = 100 and n = 250 in each
group.

## Dist Shape T.test MW.test

## 1 Normal symmetric 0.598 0.571

## 2 Uniform symmetric 0.612 0.582

## 3 Gamma low skew 0.628 0.694

## 4 Gamma high skew 0.616 0.886

Regardless of the distribution, the power of the t-test is about 60%,

The power of the Mann-Whitney test increases as the data become
more skewed.



More about the Mann-Whitney test

Mann-Whitney may reject H0 if the data come from different
distributions even if the means are the same.

Exponential

Normal

−5 0 5 10 15 20

## Dist mean variance median

## 1 Normal 2.965056 9.639457 2.894027

## 2 Exponential 2.982511 9.005277 2.020666

## t.test = 0.8982921 , wilcoxon = 0.004800793

Paired t-test versus wilcoxon signed rank test

Paired t-test compares the mean of the difference in the paired data.

Signed rank test compares the median of the difference in the paired
data.

If the data are skewed, the mean is different from the median.

## mean(x) = -0.0744075, median(x) = 0

## mean(y) = 0.9284962, median(y) = 0

## If z = x-y then:

## mean(z) = -1.002904, median(z) = -0.1748501

## p-value from a paired t-test = 0.01515364

## signed rank test = 0.08973196



Testing the difference in the scale parameter

H0 : σ2
x = σ2

y versus H1 : σ2
x Ó= σ2

y

The F test is the ratio of two variance estimates.

Bartlett’s test can test equality of variances in many groups.

The two tests above rely heavily on the normality assumption.

Levene’s Test is less susceptible to the normality assumption and
can test many groups.

Brown–Forsythe test is similar to Levene’s test but is even more
robust to the distributional assumptions.

Non-parametric tests are also available Fligner-Killeen test,
Ansari-Bradley test, and Mood test.

One-Way ANOVA

One-way ANalysis Of VAriance (ANOVA) is a way to compare
more than2 groups.

Y is a continuous response variable.

A is a categorical variable that indicates K distinct groups.

We assume Yij are independent N(µ + αi , σ2)

H0 : all αi = 0, H1 : at least one αi Ó= 0

Like the two sample t-test.
ANOVA is robust to the Normality assumption.
Balanced ANOVA is robust to unequal variance.
Independence is a very important assumption.



Normality and equal variance (balanced case)

Five Groups, n = 10 in each group
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ANOVA parametrization

ANOVA requires a parametrization for the model.

The usual method is to select one of the groups to be the reference.

◮ All other levels of the factor are compared to this group.

With only 2 groups, the model computes

◮ the mean for the reference group
◮ the difference between the means of the treatment and
reference groups.

We are usually only interested in the difference.

If there are more than 2 groups, none of the non-reference groups
are compared to each other.

Example Plant Weight Data

With any analysis you should try plotting the data first. Here are
boxplots of the data in each group.
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One-Way ANOVA

ANOVA with 2 groups is equivalent to a two sample t-test.

## Response = Plant Weight

## Df Sum Sq Mean Sq F value Pr(>F)

## group 1 0.688 0.6882 1.419 0.249

## Residuals 18 8.729 0.4850

## Two sample t-test

## t = 1.19126 , df = 18 , p value = 0.2490232

Note:
√
1.419 = ±1.191

In fact a t2
ν ∼ F1,ν .

Quantifying the difference

The model can fit the mean of each group.

## Estimate Std.Error 2.5% 97.5%

## Ctl 5.032 0.2202 4.5693 5.4947

## Trt 4.661 0.2202 4.1983 5.1237

However the parameters the model uses are below.

## Estimate Std.Error tvalue Pr(>|t|)

## Ctl 5.032 0.2202 22.8501 0.000

## Trt - Ctl -0.371 0.3114 -1.1913 0.249

Usually we only care about the difference in the group means.



Selecting parameters for the model

There are many possible parameter choices for an ANOVA model.

Important: Make sure you know which parametrization is used by
your software before you interpret the output from the model.

◮ Most common method is to set a specific level of a factor as a
reference.

◮ Alternately set the average effect over all the levels of the
factor to be zero.

The model will have a single parameter to reflect a “typical” value
and K − 1 parameters that model the deviations from this value.

ANOVA Example: Sepal length in 3 species of Iris

setosa versicolor virginica
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There is a clear indication of a difference in the sepal length
between the species.



ANOVA results for the iris data

## ANOVA Table

## Df Sum Sq Mean Sq F value Pr(>F)

## Species 2 13.789 6.8943 29.314 1.71e-07

## Residuals 27 6.350 0.2352

The ANOVA test for the significant differences between the 3
species has only 2 degrees of freedom.

This is the number of variables you need to estimate to compare all
the level of the factor.

The residual term represents the error in the model.

The degrees of freedom for error mainly determines the power of the
ANOVA test.

Estimated coefficients for Iris data

## Setting a reference group

## Estimate Std. Error t value Pr(>|t|)

## MU 6.59 0.153 42.97 2.13e-26

## Var1 -1.66 0.217 -7.65 3.12e-08

## Var2 -0.79 0.217 -3.64 1.13e-03

## Making the sum of the group effects = 0

## Estimate Std. Error t value Pr(>|t|)

## MU 5.7733 0.0885 65.205 3.05e-31

## Var1 -0.8433 0.1252 -6.735 3.13e-07

## Var2 0.0267 0.1252 0.213 8.33e-01

Without more information these parameters don’t mean much.



Posthoc tests

If we look at the pairwise comparisons of the groups in either model
the results are the same.

## Diff SE Tstat

## versicolor - setosa 0.87 0.217 4.01

## virginica - setosa 1.66 0.217 7.65

## virginica - versicolor 0.79 0.217 3.64

We can compute p-values for these comparisons but need to be
adjusted for multiple comparisons.

The amount of adjustment increases with the number of pairwise
comparisons.

ANOVA with a blocking factor

ANOVAs may contain more than one factor.

Factors that are not of interest are considered blocking factors.

Blocking factors are primarily used to control other sources of error
that otherwise might hide significant effects in our factor of interest.

Y is a continuous response, A is a factor with I levels, B is the
blocking factor with J levels.

Yijk are independent N(µij , σ2)

µij = µ + αi + βj

Our hypothesis of interest is
H0 : all αi = 0, H1 : at least one αi Ó= 0



Example Students’s Sleep data

The data shows the effect of two drugs (group) on the amount of
extra sleep hours. The blocks are subjects (ID) who act as their own
control.

## Df Sum Sq Mean Sq F value Pr(>F)

## group 1 12.48 12.482 16.501 0.00283

## ID 9 58.08 6.453 8.531 0.00190

## Residuals 9 6.81 0.756

If we ignore ID then we do not see a significant effect for group.

## Df Sum Sq Mean Sq F value Pr(>F)

## group 1 12.48 12.482 3.463 0.0792

## Residuals 18 64.89 3.605

More on the block design

ANOVA with a blocking factor and 2 groups and only 1 observation
per group in each block is equivalent to a paired t-test.

## Paired t-test

## t = -4.062128 , df = 9 , p value = 0.00283289

We can quantify the difference in the group means.

## Estimate Std. Error t value Pr(>|t|)

## Block Design 1.58 0.3890 4.062 0.002833

## One-Way 1.58 0.8491 1.861 0.079187

Note the estimated difference is the same for the block design and
the One-Way ANOVA but the standard error is different.



Non-parametric generalizations

Kruskal-Wallis is a rank based version of a One-Way ANOVA.

A Kruskal-Wallis test with only 2 groups is identical to a
Mann-Whitney test.

Friedman rank-sum test is a non-parametric way to analyse
unreplicated (n = 1) complete blocked data.

◮ If there are only 2 groups, it is not the same as a signed rank
test.

Once you are outside these 2 special cases there are very few
non-parametric methods available.

However we have seen an ANOVA model is still valid even if the
normality assumption is violated.

Two-Way ANOVA

Two-Way ANOVA is similar to a block design except both factors
are of interest and can interact with each other.

Y is a continuous response, A is a factor with K levels, B is a factor
with J levels.

Yijk are independent N(µij , σ2)

µij = µ + αi + βj + γij

We are interested in testing
H0 : all γij = 0, H1 : at least one γij Ó= 0

If there is no interaction then we are interested in
H0 : all αi = 0, H1 : at least one αi Ó= 0
H0 : all βj = 0, H1 : at least one βj Ó= 0



Meaning of the interaction

An interaction between factor A and B means the effect of A

depends on the level of B and the effect of B depends on the level
of A.

If an interaction between A and B is in the model then we cannot
interpret the main effects of either factor.

A main effect need not be significant in the presence of an
interaction term.

But the main effects must remain in the model otherwise we cannot
interpret any of the interaction terms that involve that factor.

Example Tooth Growth in Guinea Pigs.

Treatments are Vitamin C dose and delivery method.
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Two-Way ANOVA

## ANOVA Table

## Df Sum Sq Mean Sq F value Pr(>F)

## supp 1 205.4 205.4 15.572 0.000231

## dose 2 2426.4 1213.2 92.000 < 2e-16

## supp:dose 2 108.3 54.2 4.107 0.021860

## Residuals 54 712.1 13.2

Setting a reference group, we can see the estimated effects.

## Estimate Std. Error t value Pr(>|t|)

## Ref(OJ:0.5) 13.230 1.148 11.521 3.60e-16

## VC -5.250 1.624 -3.233 0.00209

## 1.0 9.470 1.624 5.831 3.18e-07

## 2.0 12.830 1.624 7.900 1.43e-10

## VC:1.0 -0.680 2.297 -0.296 0.76831

## VC:2.0 5.330 2.297 2.321 0.02411

Posthoc comparisons in a Two-Way ANOVA

If there is an interaction between the factors posthoc comparisons
must be done within the levels of the other factor.

In our example, there are 6 groups which means 15 pairwise
comparisons are possible.

◮ Each of the 3 levels of Dose contain a single comparison of
delivery methods (VC-OJ).

◮ Each of the 2 delivery methods have 3 possible dose
comparisons (1.0-0.5, 2.0-0.5, 2.0-1.0).

◮ The other 6 pairwise comparisons are usually not of interest
because both the delivery method and the dose change
between the 2 groups being compared.



## Within Dose Level

## Diff SE Tstat

## VC:0.5 - OJ:0.5 -5.25 1.62 -3.2327

## VC:1.0 - OJ:1.0 -5.93 1.62 -3.6514

## VC:2.0 - OJ:2.0 0.08 1.62 0.0493

## Within delivery method

## Diff SE Tstat

## OJ:1.0 - OJ:0.5 9.47 1.62 5.83

## OJ:2.0 - OJ:0.5 12.83 1.62 7.90

## OJ:2.0 - OJ:1.0 3.36 1.62 2.07

## VC:1.0 - VC:0.5 8.79 1.62 5.41

## VC:2.0 - VC:0.5 18.16 1.62 11.18

## VC:2.0 - VC:1.0 9.37 1.62 5.77

More Complicated ANOVA

ANOVA models can have any number of factors.

◮ As the number of factors of interest increases the number of
factor level combinations increases dramatically.

◮ This is not true for blocking factors because they do not
interact with the other factors.

When the number of factors is large it may become impossible to
observe every combination of factor levels possible.

We can reduce the sample size by assuming certain higher order
interactions are negligible and design an experiment that confounds
these effects.

This leads to incomplete block designs, fractional factorial designs,
Latin square designs and others.



Example: 3 binary factors in 6 blocks.

Response is growth of peas

factors: nitrogen (N), phosphate (P), potassium (K).

blocks: 6 plots of land each subdivided into 4 sections.

We have 3 factors each with 2 levels (present/absent) so there are 8
groups in total.

We can only observe 4 groups in each plot.

In order to maximize our statistical power when estimating the main
effects and two-way interaction between the 3 elements, we use a
fractional factorial design in each plot that confounds the three way
interaction between the 3 elements.

## Response: yield

## Sum Sq Df F value Pr(>F)

## block 343.29 5 4.4467 0.015939

## N 194.04 1 12.5672 0.004033

## P 0.35 1 0.0225 0.883288

## K 7.35 1 0.4758 0.503435

## N:P 21.28 1 1.3783 0.263165

## N:K 33.13 1 2.1460 0.168648

## P:K 0.48 1 0.0312 0.862752

## N:P:K 0

## Residuals 185.29 12

The model contains a main effect for the block and three elements
factors, and 3 two way interactions between the 3 element factors.

Block is significant but none of the two way interactions are
significant.



Since we see no evidence of interactions, we refit the model
excluding interactions so we can interpret the main effects.

## Response: yield

## Sum Sq Df F value Pr(>F)

## N 189.282 1 11.8210 0.00366

## P 8.402 1 0.5247 0.47999

## K 95.202 1 5.9455 0.02767

## Residuals 240.185 15

Now we have significant effects for both N and K.

## Estimate Std. Error t value Pr(>|t|)

## N Present 5.6167 1.6336 3.4382 0.00366

## P Present -1.1833 1.6336 -0.7244 0.47999

## K Present -3.9833 1.6336 -2.4383 0.02767

Summary

ANOVA are used to compare numeric responses by categorical
predictors.

Predictors can be of interest (factors) or not (blocks)

ANOVA is robust to the normality assumption.

Balanced ANOVA is robust to the equal variance assumption.

Independent observations is an important assumption.



Questions?

◮ www.stat.ubc.ca/SCARL

◮ STAT 551 - Stat grad students taking this course offer free
statistical advice. Fall semester every academic year.

◮ SOS Program - An hour of free consulting to UBC graduate
students. Funded by the Provost and VP Research.

◮ Short Term Consulting Service - Advice from Stat grad
students. Fee-for-service on small projects (less than 15 hours).

◮ Hourly Projects - SCARL professional staff. Fee-for-service
consulting.

The End


