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Data setup for linear models

We assume Y ∼ N(µ, σ2) and the data are independent.

µ and σ2 are parameters that describe centre and spread of the
distribution respectively.

We can shift the normal distribution without changing its shape.

This allows us to split the data into 2 pieces, one fixed, the other
random.

◮ Yi = µ + εi

◮ µ is a fixed value and ε is the random error in our data.

We assume ε ∼ N(0, σ2)

We can model both the fixed and random portions of our data.

Review of Fixed Effects Linear Models

Regression, ANOVA, ANCOVA are all fixed effects linear models.

We model µ as a function of some predictors.

Example: µij = a + bxij + Ti

xij is an observed numeric variable. a, b and Ti are fixed effects,
Ti is associated with the levels of an unspecified categorical variable.

εij is random described by a single parameter σ2.

Approximately 95% of the errors will be between −2σ and 2σ.

We assume the errors are independent.



Estimating Fixed Effects

We do not know the true value of the fixed effects but we can
estimate it using the data.

The estimates of the parameters will follow a normal distribution
because of the Central Limit Theorem.

b̂ ∼ N(b, se2

b̂
)

The standard error (se) associated with b̂ is related to σ, the sample
size, the spread of xij and its correlation with the other predictors.

There is a 95% chance that the true value of b is between
b̂ ± 1.96se

b̂
.

Random effects Models

Random effects models allow us to model the variance of our data
in a hierarchical way.

Example: Suppose we want to measure aptitude of students using a
standard test. We need a sample of students to take the test.

◮ Randomly select some schools (i).
◮ Randomly select a set of classes within each school (j).
◮ Randomly select some students from each class (k).

The overall average score is µ.
The school score is Yi = µ + γi .
The class score is Yij = µ + γi + δij .
The student score is Yijk = µ + γi + δij + εijk



Random Effects continued

Because we selected schools, classes and students randomly from a
larger group we treat these effects as random. The assumptions for
the random effects are

γ ∼ N(0, σ2
s ) (Between school variation).

δ ∼ N(0, σ2
c ) (Between class but within school variation).

ε ∼ N(0, σ2) (Between student but within class variation).

All random effects are independent.

This model allows us to estimate how much variation in aptitude
score between students is due to the school they attend and the
class they are in.

Mixed Effects Models

Mixed Effects models combine both random and fixed effects into
one model.

Usually the fixed effects are the parameters of greatest interest in
the model.

The random effects serve to control for repeated measurements on
the same sampled unit or within the same cluster.

The fixed effects can exist at any level of the hierarchy and are
tested at the appropriate level within the model.

Mixed effects models do not require a balanced design which means
the model can easily handle missing data. This is a huge advantage
over traditional repeated measures ANOVA models.



Add fixed effect to our school example

Assume µijk = µ + Ai + Bij + Cijk , where

◮ A is the province where the school is located
◮ B is the time of the class (Morning or Afternoon)
◮ C is the gender of the student

Province varies between schools, Time varies within school but
between class, and Gender varies within class but between student.

Our mixed effects model is
Yijk = µ + Ai + Bij + Cijk + γi + δij + εijk

Gender is tested at the student level, Time at the class level and
Province at the school level.

Example: Orthodontic measurements over time

The Data:

◮ distance from the pituitary to the pterygomaxillary fissure.
◮ Age of the subject (8, 10, 12 and 14) (within subject)
◮ Subject id: 27 in total
◮ Sex, Male (n=16) or Female (n=11) (between subject)

Lets fit distance as a function of age and subject (ignoring gender
for now).

◮ The first model uses fixed effects only, treating subject as a
blocking factor.

◮ The second model treats subject as a random effect.



Fixed Effects model for within subject factor

## Anova Table, Response = distance

## Df Sum Sq Mean Sq F value Pr(>F)

## Age 3 237.19 79.064 38.0396 2.986e-15

## Subject 26 518.38 19.938 9.5925 3.375e-15

## Residuals 78 162.12 2.078

## Estimate Std. Error t value

## (Intercept) 22.185 0.277 79.96

## Age10 0.981 0.392 2.50

## Age12 2.463 0.392 6.28

## Age14 3.907 0.392 9.96

Mixed Effects model for within subject factor

## Anova Table, Response = distance

## NumDF DenDF F.value Pr(>F)

## Age 3 78 38.04 2.998e-15

## Var SD

## Subject 4.465 2.113

## Residual 2.078 1.442

## Estimate Std. Error df t value

## (Intercept) 22.185 0.492 43.4 45.07

## Age10 0.981 0.392 78.0 2.50

## Age12 2.463 0.392 78.0 6.28

## Age14 3.907 0.392 78.0 9.96



Comparing the results

The results from the 2 models are identical except for the error
associated with the Intercept.

Age is a within subject factor so the ANOVA test for Age and the
estimated effects are the same. If the design was unbalanced the
results would be similar but not the same.

In the fixed effects model, we can compute the variance components
using the expected means squares of the ANOVA table. This is
non-trivial if the design is unbalanced.

In the mixed effects model, we get the variance components directly.

Models with only between subject factors

In order to control for repeated measures, we have to average the
response over subject before we can use a fixed effects model.

If we do not average, we will overstate the significance of our
between subject factor.

## Anova Table, Response = average distance

## Df Sum Sq Mean Sq F value Pr(>F)

## Sex 1 35.116 35.116 9.2921 0.005375

## Residuals 25 94.479 3.779

## Estimate Std. Error t value

## (Intercept) 24.97 0.486 51.38

## SexFemale -2.32 0.761 -3.05



Mixed Effects model approach

Mixed effects model works without having to average and is
accurate even if there is imbalance over the subjects.

## Anova Table, Response = distance

## NumDF DenDF F.value Pr(>F)

## Sex 1 25 9.2921 0.005375

## Var SD

## Subject 2.547 1.596

## Residual 4.930 2.220

## Estimate Std. Error df t value

## (Intercept) 24.97 0.486 25 51.38

## SexFemale -2.32 0.761 25 -3.05

Both within and between subject factors in the model.

We cannot average over subject with a within subject factor in the
model.

If we do not average, the fixed effects model doesn’t realize that Sex
is a between subject factor and uses the wrong error term. This will
overstate the significance of Sex. The correct error term for Sex is
Subject.

## Anova Table, Response = distance

## Df Sum Sq Mean Sq F value Pr(>F)

## Age 3 237.19 79.064 38.040 2.986e-15

## Sex 1 140.46 140.465 67.581 3.513e-12

## Subject 25 377.91 15.117 7.273 6.062e-12

## Residuals 78 162.12 2.078



Using repeated measures ANOVA instead

This model works and is correct because we have complete data. If
some subjects were not observed at all ages, this model could not
be used.

##

## Error: Subject

## Df Sum Sq Mean Sq F value Pr(>F)

## Sex 1 140.5 140.46 9.292 0.00538

## Residuals 25 377.9 15.12

##

## Error: Within

## Df Sum Sq Mean Sq F value Pr(>F)

## Age 3 237.2 79.06 38.04 2.99e-15

## Residuals 78 162.1 2.08

Mixed Effects Model approach

## Anova Table, Response = distance

## NumDF DenDF F.value Pr(>F)

## Age 3 78 38.040 2.998e-15

## Sex 1 25 9.292 0.005375

## Var SD

## Subject 3.260 1.805

## Residual 2.078 1.442

## Estimate Std. Error df t value

## (Intercept) 23.131 0.542 38 42.66

## Age10 0.981 0.392 78 2.50

## Age12 2.463 0.392 78 6.28

## Age14 3.907 0.392 78 9.96

## SexFemale -2.321 0.761 25 -3.05



Within subject factor if data is not balanced

Fixed Effects Model

## Anova Table, Response = distance

## Df Sum Sq Mean Sq F value Pr(>F)

## Age 3 259.28 86.428 34.7130 3.888e-13

## Subject 26 443.74 17.067 6.8548 4.227e-10

## Residuals 60 149.39 2.490

Mixed Effects Model

## Anova Table, Response = distance

## NumDF DenDF F.value Pr(>F)

## Age 3 62.078 28.733 8.985e-12

Either method is fine but it affects the interpretation of results.

Imbalance for between subject factors

Fixed Effects model on average observation

## Anova Table, Response = distance

## Df Sum Sq Mean Sq F value Pr(>F)

## Sex 1 45.136 45.136 10.639 0.003192

## Residuals 25 106.059 4.242

Mixed Effects Model on raw data

## Anova Table, Response = distance

## NumDF DenDF F.value Pr(>F)

## Sex 1 24.679 10.347 0.003605

Mixed effects takes variation in sample size into account. Result is
more accurate.



Together in a Mixed Effects model

## Anova Table, Response = distance

## NumDF DenDF F.value Pr(>F)

## Age 3 62.442 28.3719 1.071e-11

## Sex 1 25.248 9.1667 0.005612

## Var SD

## Subject 3.132 1.770

## Residual 2.477 1.574

## Estimate Std. Error df t value

## (Intercept) 23.203 0.582 44.4 39.86

## Age10 0.738 0.489 62.4 1.51

## Age12 2.575 0.478 63.0 5.39

## Age14 3.946 0.473 61.6 8.34

## SexFemale -2.352 0.777 25.2 -3.03

More on Mixed Effects models

Mixed effects models assume data are independent only if we
condition on the random effects.

Unconditionally, observations on the same subject are correlated.

If we have Yij = µ + γi + δij being the jth observation on the ith
subject.

γ ∼ N(0, σ2

B) and δ ∼ N(0, σ2

W )

We can compute the correlation between observations on the same
and different subjects.

Cor(Y1,1, Y2,1) = Cor((γ1 + δ11), (γ2 + δ21)) = 0

Cor(Y1,1, Y1,2) = Cor((γ1 + δ11), (γ1 + δ12)) =
σ

2

B

σ
2

B
+σ

2

W



More than 1 Random Effect (Hierarchical or Crossed
models)

The models above demonstrate that we can fit 2 levels of data in
the same model using Mixed Effects model.

We can fit multiple levels simultaneously using this technique. Each
level is defined by a random effect.

A hierarchical model requires the random effects be nested to create
a hierarchy.

Yijk = µ + γi + δij + εijk

However random effects do not have to be nested they can be
crossed.

Yijk = µ + γi + δj + εijk

Example: Student evaluation of Instructors

Students rate their lectures between 0 and 100. Each lecture is rated
by multiple students and each student can rate multiple lectures.

The dataset has 21446 ratings from 2487 students. The lectures
were taught by 318 instructors from 3 different departments. The
goal is to test for a difference between departments and course type
(service or not).

We need to account for repeated observations on the instructor and
repeated observations by the student.

## ANOVA Table, Response = Score

## NumDF DenDF F.value Pr(>F)

## service 1 4290.7 39.297 3.998e-10

## dept 2 350.2 4.857 0.008309

## service:dept 2 3974.8 6.905 0.001015



The fixed effects

The estimated group means are below:

## service dept Estimate SE DF

## 1 FALSE 6 54.7 1.19 502

## 2 TRUE 6 50.2 1.17 453

## 3 FALSE 4 57.1 1.07 560

## 4 TRUE 4 56.4 1.14 700

## 5 FALSE 9 55.9 1.45 376

## 6 TRUE 9 50.0 1.55 465

The fixed effects show that the lecture ratings are similar for Dept 6
and 9 but are higher for Dept 4. In general service courses receive a
lower rating within the 3 departments.

The random effects and correlations

The variance components of the model are below:

## Var SD

## Student 49.80 7.057

## Instructor 98.35 9.917

## Residual 584.59 24.178

Observations from difference students on different instructors are
uncorrelated.

Same student on different instructors: ρ = 0.08

Different students on same instructor: ρ = 0.14

Each instructor/student combination appeared only once in the
dataset so there is no same student same instructor correlation
estimate.



Testing Random Effects

We can test the random effects using a likelihood ratio test.

We refit the the model without a random effects and evaluate the
change in the likelihood.

## Likelihood ratio test for Student random effect

## Chisq Chi Df Pr(>Chisq)

## 532.47 1 < 2.2e-16

## Likelihood ratio test for Instructor random effect

## Chisq Chi Df Pr(>Chisq)

## 2508.9 1 < 2.2e-16

Mixed Effects model for non-normal responses.

For distributions other than the normal model, we cannot separate
the mean from the variance. The two are related.

We also have the link function to contend with.

Dist Link Variance Dist Link Variance

Poisson log(µ) µ NB log(µ) µ + µ2/r

Binomial logit(µ) µ(1 − µ) NB log(µ) τ2µ

In this case we put the random effects within the link function.

g(µij) = α + βxij + γi where γi ∼ N(0, σ2).



Example: Contagious bovine pleuropneumonia (CBPP)
We have repeated measures on herd of zebu cattle in Ethiopia.
There are 15 herds with 3 or 4 repeated measures. The response is
the number of cattle with CBPP.

## Likelihood Ratio Test

## Df LRT Pr(Chi)

## period 3 25.61 1.151e-05

## Var SD

## herd 0.4123 0.6421

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -1.398 0.231 -6.05 1.47e-09

## period2 -0.992 0.303 -3.27 1.07e-03

## period3 -1.128 0.323 -3.49 4.74e-04

## period4 -1.580 0.422 -3.74 1.82e-04

Questions?

www.stat.ubc.ca/SCARL

STAT 551 - Stat grad students taking this course offer free
statistical advice. Fall semester every academic year.

SOS Program - An hour of free consulting to UBC graduate
students. Funded by the Provost and VP Research.

Short Term Consulting Service - Advice from Stat grad students.
Fee-for-service on small projects (less than 15 hours).

Hourly Projects - SCARL professional staff. Fee-for-service
consulting.

The End


