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Data setup for linear models

We assume Y ∼ N(µ, σ2) and the data are independent.

µ and σ2 are parameters that describe centre and spread of the
distribution respectively.

We can shift the normal distribution without changing its shape.

This allows us to split the data into 2 pieces, one fixed, the other
random.

◮ Yi = µ + εi

◮ µ is a fixed value and ε is the random error in our data.

We assume ε ∼ N(0, σ2)

We can model both the fixed and random portions of our data.

Review of Fixed Effects Linear Models

Regression, ANOVA, ANCOVA are all fixed effects linear models.

We model µ as a function of some predictors.

Example: µij = a + bxij + Ti

xij is an observed numeric variable. a, b and Ti are fixed effects,
Ti is associated with the levels of an unspecified categorical variable.

εij is random described by a single parameter σ2.

Approximately 95% of the errors will be between −2σ and 2σ.

We assume the errors are independent.



Estimating Fixed Effects

We do not know the true value of the fixed effects but we can
estimate it using the data.

The estimates of the parameters will follow a normal distribution
because of the Central Limit Theorem.

b̂ ∼ N(b, se2

b̂
)

The standard error (se) associated with b̂ is related to σ, the sample
size, the spread of xij and its correlation with the other predictors.

There is a 95% chance that the true value of b is between
b̂ ± 1.96se

b̂
.

Random effects Models

Random effects models allow us to model the variance of our data.

Example: Suppose we want to measure aptitude of students using a
standard test. We need a sample of students to take the test.

◮ Randomly select some schools (i).
◮ Randomly select a set of classes within each school (j).
◮ Randomly select some students from each class (k).

The overall average score is µ.
The school score is Yi = µ + γi .
The class score is Yij = µ + γi + δij .
The student score is Yijk = µ + γi + δij + εijk



Random Effects continued

Because we selected schools, classes and students randomly from a
larger group we treat these effects as random. Since these effects
are nested, they form a hierarchical linear model.

The random effects assumed to be independent with

γ ∼ N(0, σ2
s ) (Between school variation).

δ ∼ N(0, σ2
c ) (Between class but within school variation).

ε ∼ N(0, σ2) (Between student but within class variation).

This model allows us to estimate how much variation in aptitude
score between students is due to the school they attend and the
class they are in.

Random Effects can depend on parameters as well. Anything
beyond a random intercept model is a big jump in complexity.

Random Effects continued

Random effects models assume data are conditionally independent
given the random effects.

Unconditionally, observations on the same unit are correlated.

If we have Yij = µ + γi + δij being the jth observation on the ith
subject.

γ ∼ N(0, σ2

B) and δ ∼ N(0, σ2

W )

We can compute the correlation between observations on the same
and different subjects.

Cor(Y1,1, Y2,1) = Cor((γ1 + δ11), (γ2 + δ21)) = 0

Cor(Y1,1, Y1,2) = Cor((γ1 + δ11), (γ1 + δ12)) =
σ
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σ
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Mixed Effects Models

Mixed Effects models contain both fixed and random effects.

The random effects can control for repeated measurements on the
same sampled unit or cluster. This is a random intercept model.

Usually the fixed effects are the parameters of interest and can vary
within any level of the random effects. They will be tested at the
appropriate level within the model.

Mixed effects models do not require a balanced design which means
the model can easily handle missing data.

Traditional models like repeated measures ANOVA requires the data
to be balanced within the random effects. No missing data.

Example: Orthodontic measurements over time

The Data:

◮ distance from the pituitary to the pterygomaxillary fissure.
◮ Age of the subject (8, 10, 12 and 14) (within subject)
◮ Subject id: 27 in total
◮ Sex, Male (n=16) or Female (n=11) (between subject)

Lets fit distance as a function of age and subject (ignoring gender
for now).

◮ The first model uses fixed effects only, treating subject as a
blocking factor.

◮ The second model treats subject as a random effect.



Fixed Effects model for within subject factor

Subject is included as a fixed blocking factor.

## Anova Table, Response = distance

## Df Sum Sq Mean Sq F value Pr(>F)

## Age 3 237.19 79.064 38.0396 2.986e-15

## Subject 26 518.38 19.938 9.5925 3.375e-15

## Residuals 78 162.12 2.078

## Estimate Std. Error t value

## (Intercept) 21.162 0.760 27.85

## Age10 0.981 0.392 2.50

## Age12 2.463 0.392 6.28

## Age14 3.907 0.392 9.96

Mixed Effects model for within subject factor

Subject is included as a random effect.

## Anova Table, Response = distance

## NumDF DenDF F.value Pr(>F)

## Age 3 78 38.04 2.998e-15

## Var SD

## Subject 4.465 2.113

## Residual 2.078 1.442

## Estimate Std. Error df t value

## (Intercept) 22.185 0.492 43.4 45.07

## Age10 0.981 0.392 78.0 2.50

## Age12 2.463 0.392 78.0 6.28

## Age14 3.907 0.392 78.0 9.96



Comparing the results

The results from the 2 models are identical except for the error
associated with the Intercept.

Age is a within subject factor so the ANOVA test for Age and the
estimated effects are the same. If the design was unbalanced the
results would be similar but not the same.

In the fixed effects model, we can compute the variance components
using the expected means squares of the ANOVA table. This is
non-trivial if the design is unbalanced.

In the mixed effects model, we get the variance components directly
as a single parameter. We do not get the individual random effects
directly.

Models with only between subject factors

In order to control for repeated measures, we have to average the
response over subject before we can use a fixed effects model.

If we do not average, we will overstate the significance of our
between subject factor.

## Anova Table, Response = average distance

## Df Sum Sq Mean Sq F value Pr(>F)

## Sex 1 35.116 35.116 9.2921 0.005375

## Residuals 25 94.479 3.779

## Estimate Std. Error t value

## (Intercept) 24.97 0.486 51.38

## SexFemale -2.32 0.761 -3.05



Mixed Effects model approach

Mixed effects model works without having to average and is
accurate even if there is imbalance over the subjects.

## Anova Table, Response = distance

## NumDF DenDF F.value Pr(>F)

## Sex 1 25 9.2921 0.005375

## Var SD

## Subject 2.547 1.596

## Residual 4.930 2.220

## Estimate Std. Error df t value

## (Intercept) 24.97 0.486 25 51.38

## SexFemale -2.32 0.761 25 -3.05

Comparing the results

The estimated effect for sex, its standard error and significance test
are the same in the 2 models.

The MSE for the average can be computed from the variance
components in the mixed effects model. 3.779 = 2.547 + 4.930/4

In the fixed effects model, we have variance of the average. In the
mixed effects model we have the variance broken into its 2
components, within and between subject.

If we increase the number of observations within subject, we can
reduce the variance down to a minimum of the between subject
variance.

In order to seriously increase power we need to increase the number
of subjects.



Within and between subject factors in the same model.

We cannot average over subject with a within subject factor in the
model.

If we do not average, the fixed effects model does not properly
account for Sex as a between subject factor and uses the wrong
error term. This overstates the significance of Sex. The correct error
term for Sex is Subject.

## Anova Table, Response = distance

## Df Sum Sq Mean Sq F value Pr(>F)

## Age 3 237.19 79.064 38.040 2.986e-15

## Sex 1 140.46 140.465 67.581 3.513e-12

## Subject 25 377.91 15.117 7.273 6.062e-12

## Residuals 78 162.12 2.078

Using repeated measures ANOVA instead

This model works and is correct because we have complete data. If
some subjects were not observed at all ages, this model could not
be used.

##

## Error: Subject

## Df Sum Sq Mean Sq F value Pr(>F)

## Sex 1 140.5 140.46 9.292 0.00538

## Residuals 25 377.9 15.12

##

## Error: Within

## Df Sum Sq Mean Sq F value Pr(>F)

## Age 3 237.2 79.06 38.04 2.99e-15

## Residuals 78 162.1 2.08



Mixed Effects Model approach

## Anova Table, Response = distance

## NumDF DenDF F.value Pr(>F)

## Age 3 78 38.040 2.998e-15

## Sex 1 25 9.292 0.005375

## Var SD

## Subject 3.260 1.805

## Residual 2.078 1.442

## Estimate Std. Error df t value

## (Intercept) 23.131 0.542 38 42.66

## Age10 0.981 0.392 78 2.50

## Age12 2.463 0.392 78 6.28

## Age14 3.907 0.392 78 9.96

## SexFemale -2.321 0.761 25 -3.05

Comparing the results

The results of the repeated measures ANOVA and the mixed effects
model are identical.

The Age and Sex results are the same as those obtained when we
modelled them separately.

We can compute the correct test for Sex using the ANOVA table
from the fixed effects model. It’s just the software cannot do it
automatically.

Repeated Measures ANOVA breaks the model into two pieces. If the
design is unbalanced, it cannot separate the components properly.

The mixed effects model is able to compute the correct components
without having to separate the pieces of the model.



Within subject factor (Unbalanced case)

Fixed Effects Model

## Anova Table, Response = distance

## Df Sum Sq Mean Sq F value Pr(>F)

## Age 3 223.94 74.646 48.577 4.676e-16

## Subject 26 414.28 15.934 10.369 6.920e-14

## Residuals 60 92.20 1.537

Mixed Effects Model

## Anova Table, Response = distance

## NumDF DenDF F.value Pr(>F)

## Age 3 60.027 36.312 1.643e-13

Either model is fine but the choice affects the interpretation.

Between subject factors (Unbalanced case)

Fixed Effects model on average observation

## Anova Table, Response = average distance

## Df Sum Sq Mean Sq F value Pr(>F)

## Sex 1 57.085 57.085 12.607 0.001554

## Residuals 25 113.196 4.528

Mixed Effects Model on raw data

## Anova Table, Response = distance

## NumDF DenDF F.value Pr(>F)

## Sex 1 22.776 13.035 0.001489

Mixed effects takes variation in sample size into account. Result is
more accurate.



Together in a Mixed Effects model

## Anova Table, Response = distance

## NumDF DenDF F.value Pr(>F)

## Age 3 59.947 35.703 2.305e-13

## Sex 1 23.960 10.980 0.002918

## Var SD

## Subject 3.478 1.865

## Residual 1.553 1.246

## Estimate Std. Error df t value

## (Intercept) 23.37 0.553 35.4 42.26

## Age10 1.22 0.408 60.7 3.00

## Age12 2.35 0.369 59.8 6.36

## Age14 3.79 0.382 59.8 9.92

## SexFemale -2.59 0.782 24.0 -3.31

Comparing the results for the unbalanced case

In the unbalanced case, fixed effects models give different results
that the mixed effects model for both the within subject models and
the between subject models.

For within subject models, a fixed effects approach means the
results are only valid for this specific set of subjects.

For between subject models, fixed effects models on the average
fails to adjust for the relationship between the variance of the
average and the sample size .

Fitting both within and between factors together gives a different
result than fitting each separately. In the unbalanced case the within
factors can be partially confounded with the between factors.



A model with many fixed effects

Math Achievement Scores from 7185 students from 160 schools.

Student level predictors are

◮ Sex (M/F)
◮ Minority (Yes/No)
◮ SES (socio-economic status) as a numeric rating.

School level predictors are

◮ Size of the school in 1000’s of students
◮ Sector (Public or Catholic)
◮ PRACAD (percentage students on the academic track)
◮ DISCLIM (numeric rating of the discrimination climate).

We fit a mixed effects model with school as a random effect
(students are repeated measures within the school)

The Anova table

## Anova Table, Response = Math Achievement Score

## NumDF DenDF F.value Pr(>F)

## Sex 1 5148.8 62.36 3.553e-15

## Minority 1 2734.6 240.77 < 2.2e-16

## SES 1 6776.5 348.18 < 2.2e-16

## Size 1 154.0 14.31 0.000221

## Sector 1 148.1 4.08 0.045275

## PRACAD 1 165.1 39.87 2.413e-09

## DISCLIM 1 160.3 4.06 0.045602

Note the denominator degrees of freedom (DF) are not integer
valued. This is generally true mixed effects models with unbalanced
data.

DF is a parameter in a statistical distribution. It is related to sample
size.



The fixed and random effects

## Var SD

## School 1.462 1.209

## Residual 35.897 5.991

## Estimate Std. Error df t value

## (Intercept) 10.653 0.460 180 23.17

## SexFemale -1.253 0.159 5149 -7.90

## MinorityYes -3.043 0.196 2735 -15.52

## SES 1.971 0.106 6777 18.66

## Size 0.823 0.218 154 3.78

## SectorCatholic 0.802 0.397 148 2.02

## PRACAD 4.283 0.678 165 6.31

## DISCLIM -0.375 0.186 160 -2.01

More than one Random Effect (Hierarchical or Crossed
models)

The models above demonstrate that we can fit 2 levels of data in
the same model using Mixed Effects model.

We can fit multiple levels simultaneously using this technique. Each
level is defined by a random effect.

A hierarchical model requires the random effects be nested to create
a hierarchy.

Yijk = µ + γi + δij + εijk

However random effects do not have to be nested they can be
crossed.

Yijk = µ + γi + δj + εijk



Example: Student evaluation of instructor’s lectures

Students rate their lectures between 0 and 100. Each lecture is rated
by multiple students and each student can rate multiple lectures.

The dataset has 21446 ratings from 2487 students. The lectures
were taught by 318 instructors from 3 different departments. The
goal is to test for a difference between departments and course type
(service or not).

We need to account for repeated observations on the instructor and
repeated observations by the student.

## ANOVA Table, Response = Score

## NumDF DenDF F.value Pr(>F)

## service 1 4290.7 39.297 3.998e-10

## dept 2 350.2 4.857 0.008309

## service:dept 2 3974.8 6.905 0.001015

The fixed effects

The estimated group means are below:

## service dept Estimate SE DF

## 1 FALSE 6 54.7 1.19 502

## 2 TRUE 6 50.2 1.17 453

## 3 FALSE 4 57.1 1.07 560

## 4 TRUE 4 56.4 1.14 700

## 5 FALSE 9 55.9 1.45 376

## 6 TRUE 9 50.0 1.55 465

The fixed effects show that the lecture ratings are similar for Dept 6
and 9 but are higher for Dept 4. In general service courses receive a
lower rating within the 3 departments.



The random effects and correlations

The variance components of the model are below:

## Var SD

## Student 49.80 7.057

## Instructor 98.35 9.917

## Residual 584.59 24.178

Observations from difference students on different instructors are
uncorrelated.

Same student on different instructors: ρ = 0.08

Different students on same instructor: ρ = 0.14

Each instructor/student combination appeared only once in the
dataset so there is no same student same instructor correlation
estimate.

Testing Random Effects

We can test the random effects using a likelihood ratio test.

We refit the the model without a random effects and evaluate the
change in the likelihood.

## Likelihood ratio test for Student random effect

## Chisq Chi Df Pr(>Chisq)

## 532.47 1 < 2.2e-16

## Likelihood ratio test for Instructor random effect

## Chisq Chi Df Pr(>Chisq)

## 2508.9 1 < 2.2e-16



Mixed Effects model for non-normal responses.

For other distributions, the mean and variance are related and
cannot be separated

The link function relates the fixed effects to the mean and
transforms the mean to the entire real line. We also put the random
effects within the link function.

Dist Link Variance Dist Link Variance

Poisson log(µ) µ NB log(µ) µ + µ2/r

Binomial logit(µ) µ(1 − µ) NB log(µ) τ2µ

g(µij) = α + βxij + γi where γi ∼ N(0, σ2).

Example: Contagious bovine pleuropneumonia (CBPP)
We have repeated measures on herd of zebu cattle in Ethiopia.
There are 15 herds with 3 or 4 repeated measures. The response is
the number of cattle with CBPP.

## Likelihood Ratio Test

## Df LRT Pr(Chi)

## period 3 25.61 1.151e-05

## Var SD

## herd 0.4123 0.6421

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -1.398 0.231 -6.05 1.47e-09

## period2 -0.992 0.303 -3.27 1.07e-03

## period3 -1.128 0.323 -3.49 4.74e-04

## period4 -1.580 0.422 -3.74 1.82e-04



Questions?

www.stat.ubc.ca/SCARL

STAT 551 - Stat grad students taking this course offer free
statistical advice. Fall semester every academic year.

SOS Program - An hour of free consulting to UBC graduate
students. Funded by the Provost and VP Research.

Short Term Consulting Service - Advice from Stat grad students.
Fee-for-service on small projects (less than 15 hours).

Hourly Projects - SCARL professional staff. Fee-for-service
consulting.

The End


