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Resources for statistical assistance

Department of Statistics at UBC:

www.stat.ubc.ca/how-can-you-get-help-your-data

SOS Program - An hour of free consulting to UBC graduate
students. Funded by the Provost and VP Research Office.

STAT 551 - Stat grad students taking this course offer free
statistical advice. Fall semester every academic year.

Short Term Consulting Service - Advice from Stat grad students.
Fee-for-service on small projects (less than 15 hours).

Hourly Projects - ASDa professional staff. Fee-for-service consulting.



Outline

Correlation analysis

Simple linear regression

Multiple linear regression

ANOVA and ANCOVA



Methods for predicting continuous outcomes

The language of statistics is not as standardized as you might like!

Different terms can be used for essentially the same model

Statisticians consider regression as the general approach



Correlation
Measures the direction and strength of relationship between numeric
variables

ρ = 0 ρ = 0.4 ρ = 0.8

ρ = 0.9 ρ = 0.95 ρ = 1



Data format
“Rectangular” data, fits in a rectangle where each row represents a
sampled unit and each column is a characteristic observed on that
unit

Example: Each row represents a different car model and the
columns are various measured features

## mpg cyl wt am gear
## Mazda RX4 21.0 6 2.620 1 4
## Mazda RX4 Wag 21.0 6 2.875 1 4
## Datsun 710 22.8 4 2.320 1 4
## Hornet 4 Drive 21.4 6 3.215 0 3
## Hornet Sportabout 18.7 8 3.440 0 3
## Valiant 18.1 6 3.460 0 3
## Duster 360 14.3 8 3.570 0 3
## Merc 240D 24.4 4 3.190 0 4
## Merc 230 22.8 4 3.150 0 4
## Merc 280 19.2 6 3.440 0 4



Association between car weight and mileage

1974 Motor Trends car data (32 different models of cars)
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Summary statistics from the data

## Mean Variance SD Correlation
## mpg 20.091 36.324 6.027
## wt 3.217 0.957 0.978 -0.87

We can test the correlation between mpg and weight

## Estimate t value p value
## Correlation -0.868 -9.56 1.29e-10

## 95% confidence interval: -0.9338264 -0.7440872

## Squared Correlation = 0.753



Data (2 numeric variables)
From a random sample of n independent units from a population we
measure 2 different variables (data)

Each variable has a mean and a variance and the two variables have
a correlation

Let’s call our variables X and Y

{X ,Y } = {xi , yi} for i = 1, . . . , n

Correlation between xi and xj is 0

Correlation between yi and yj is 0

Correlation between xi and yi is ρ



Estimating the parameters from the sample
The population parameters:

I The means are denoted by µx and µy
I The variances are denoted by σ2

x and σ2
y

I The covariance of the two variables is denoted by σxy
I The correlation is ρ = σxy

σxσy
is a number between -1 and 1

Formulas for the sample estimates of the population parameters:

µ̂x = x̄ =
∑n

1 xi/n

σ̂2
x = s2

x =
∑n

1(xi − x̄)2/(n − 1)

σ̂xy = sxy =
∑n

1(xi − x̄)(yi − ȳ)/(n − 1)

ρ̂xy = rxy = sxy/(sx sy )



Correlation analysis
By correlation we usually mean the Pearson product-moment
correlation coefficient. It measures the linear relationship between
X and Y .

ρ is estimated by r = sxy
sx sy

Hypothesis of interest is usually H0 : ρ = 0 versus H1 : ρ 6= 0 and
we use the test statistic r

√
n−2
1−r2 ∼ tn−2

We can also use Fisher’s Transformation (F (r) = 1
2 ln(1+r

1−r )) to test
if ρ equals any value including 0 and to construct confidence
intervals for ρ

Neither method is overly sensitive to the normality assumption.
While −1 ≤ r ≤ 1, −∞ < F (r) <∞



Spearman’s rank correlation coefficient

Is a rank version of Pearson’s correlation computed by converting
the data for each variable into a rank before computing the
correlation. It uses same test statistics as Pearson’s correlation.

Is closely related to the Pearson’s correlation coefficient except the
relationship need not be linear in nature

Is robust to outliers

If the relationship is linear without any extreme points, Spearman’s
and Pearson’s will be similar



Two prediction scenarios
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The prediction line
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Determining the prediction line
Minimize the error (residuals), the vertical distance between the
observed values and the predicted line
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Minimize the sum of the squared errors, method called Least
Squares

Two parameters determine the line: slope and intercept



Fitted values, residuals and mean squared error
We use the estimated slope and intercept with each xi to compute a
fitted value for yi

ŷi = b0 + b1xi

We compute the residual by taking the difference between the
observed data and the fitted value

ε̂i = yi − ŷi

We estimate the variance of the residuals

σ̂2
ε = s2

ε =
∑
ε̂2/(n − 2)

Note: The average of the residuals is 0. We use n − 2 because we
estimated 2 parameters (b0 and b1).



Least Squares estimates for the slope and intercept
The slope is primarily determined by the correlation between Y and
X . It’s magnitude is limited by the ratio of the standard deviation of
Y and X .

slope: b1 = rxy
sy
sx

= sxy
s2
x

We estimate the intercept by picking a point on the line then using
our estimate of the slope, solve for the intercept. {x̄ , ȳ} is always
on the line.

intercept: b0 = ȳ − b1x̄

With some math it can be shown that both b0 and b1 can be
computed as a weighted average of Y . This means both will follow
a normal distribution if n is large enough by the central limit
theorem of statistics (CLT).



Example revisited

Summary statistics from the data

## Mean SD Correlation
## mpg 20.091 6.027
## wt 3.217 0.978 -0.87

Regression coefficients predicting mpg by weight

## (Intercept) wt
## 37.29 -5.34

## -0.868 * 6.027 / 0.978 = -5.344
## 20.091 - -5.344 * 3.217 = 37.285



Estimated line to predict mpg from weight

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.29 1.878 19.86 8.24e-19
## wt -5.34 0.559 -9.56 1.29e-10

## R squared = 0.753

Estimated line to predict weight from mgp

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.047 0.3087 19.59 1.20e-18
## mpg -0.141 0.0147 -9.56 1.29e-10

## R squared = 0.753



Compare the 3 results

## Estimate t value p value
## Correlation -0.868 -9.56 1.29e-10

## Estimate Std. Error t value Pr(>|t|)
## wt -5.34 0.559 -9.56 1.29e-10

## Estimate Std. Error t value Pr(>|t|)
## mpg -0.141 0.0147 -9.56 1.29e-10

All three have the same t value and p value



Fitted values and residuals

ŷi = b0 + b1xi

Fiti = 37.29 + (−5.34wti )

ε̂i = yi − ŷi

Resi = wti − Fiti

## wt mpg Fit Res
## Mazda RX4 2.62 21.0 23.3 -2.28
## Mazda RX4 Wag 2.88 21.0 21.9 -0.92
## Datsun 710 2.32 22.8 24.9 -2.09
## Hornet 4 Drive 3.21 21.4 20.1 1.30
## Hornet Sportabout 3.44 18.7 18.9 -0.20

## MSE = 9.277



The coefficient of determination
Better prediction with regression line compared to red mean line?
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Variation line doesn’t explain (sum square of errors to line) = 278
Total variation in y (sum square of errors to ȳ) = 1126

% variation NOT explained by the line = 278 / 1126 = 0.247
% variation explained by the line = 1 - 0.247 = 0.753



The coefficient of determination
Tells how much better at predicting Y the regression model is
compared to just using ȳ

I proportion of the variance of Y explained by the model
I depends on the size of the errors (residuals)

For simple linear regression R2 = ρ2
xy

The R2 alone doesn’t tell the whole story:

I The more variables in the model the higher the R2 BUT also
the higher the variability in the predictions made from the
model (due to having to estimate more coefficients for the
model)

I With large sample sizes, the R2 value could still be low even
with highly significant model coefficients

I With small sample sizes, the R2 value could still be high even
with insignificant model coefficients



The error of the fitted value

Decreases as xi moves closer to x̄

I fitted values at the endpoints depend greatly on the slope of
the line

I fitted values at the middle are relatively insensitive to the slope

Decreases as the variance in x increases

I since the slope is determined by the endpoints

The distribution of the fitted value can be approximated by a
normal distribution because of the CLT. This means we can
compute accurate confidence bounds for the fitted line.



95% Confidence Interval (green) for the fitted line
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Prediction Interval

The prediction estimate is the same as the fitted value

The uncertainty (variability) in the prediction includes the
uncertainty in the fitted line (model) plus the variability in the y
data



95% Prediction Interval (blue dashed)
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Simple Linear Regression
A line that summarizes the relationship between two quantitative
variables and is used to make predictions

Regression assumes that Y is random but X is not

Model the mean of Y as a function of X

µyi = β0 + β1xi

Each observation is described as being some distance (error εi) from
the estimated mean where εi ∼ N(0, σ2)

Assumptions:

I normality is not critical
I homoscedasticity (constant variance) is important
I independent errors is critical



Diagnostics for Regression
Before fitting the model plot yi versus xi

I Does the spread of Y depend on X?
I What does the relationship look like?
I Are there any extreme X or Y values?

Plot the residuals versus the quantiles of a normal distribution

Plot residuals (εi) versus fitted values (ŷi). You should see an
uncorrelated oval of data.

If the data can be ordered over time or space, check the residuals
for indications of serial correlation

Examine the influence of each observation using Cook’s distance



Example Revisited
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Heteroscedasticity



Serial Correlation



Effect of Outliers or high leverage points
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Regession with 2 predictors
1974 Motor Trends car data (32 different models of cars)

mpg

50 100 150 200 250 300

10
15

20
25

30

50
10

0
15

0
20

0
25

0
30

0

hp

10 15 20 25 30 2 3 4 5

2
3

4
5

wt



Summary statistics from the data

## Mean Variance SD
## mpg 20.091 36.324 6.03
## hp 146.688 4700.867 68.56
## wt 3.217 0.957 0.98

## correlations between the variables

## mpg hp wt
## mpg 1.000 -0.776 -0.868
## hp -0.776 1.000 0.659
## wt -0.868 0.659 1.000



Regression predicting mpg by hp and weight (wt)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.2273 1.59879 23.28 2.57e-20
## wt -3.8778 0.63273 -6.13 1.12e-06
## hp -0.0318 0.00903 -3.52 1.45e-03

## R squared = 0.827

## wt hp mpg Fit Res
## Mazda RX4 2.62 110 21.0 23.6 -2.57
## Mazda RX4 Wag 2.88 110 21.0 22.6 -1.58
## Datsun 710 2.32 93 22.8 25.3 -2.48

## MSE = 6.726



Model Diagnostics
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Multiple Linear Regression (2 predictors)
The assumptions are the same but the equation (model) contains
more parameters:

I µY = β0 + β1X1 + β2X2
I computing the estimates of the coefficients is more complicated

but can be easily expressed in matrix form (not presented here)

The key concern is how much correlation exists between X1 and X2
since severe multicollinearity can increase the variance of the
coefficient estimates

I can complicate or prevent the identification of an optimal set
of explanatory variables for a statistical model

I assess using the variance inflation factor (VIF), 1/(1− ρ2
x1,x2)

I if VIF >= 5, coefficients are poorly estimated and one should
be wary of their p-values

I doesn’t affect how well the model fits, a model with severe
multicollinearity can produce great predictions



Example 1 Random data Y ,X1,X2

True model: Y = X1 with ρx1,x2 = 0

## Estimate Std. Error
## X1 1.005275 0.03165875

## Estimate Std. Error
## X2 -0.007381078 0.03193062

## Estimate Std. Error
## X1 1.00527 0.03166
## X2 -0.00010 0.03177

SE multiplier = 1.0



Example 2 Random data Y ,X1,X2

True model: Y = X1 with ρx1,x2 = 0.5

## Estimate Std. Error
## X1 1.005082 0.03172337

## Estimate Std. Error
## X2 0.4973381 0.03194161

## Estimate Std. Error
## X1 1.005911683 0.03649992
## X2 -0.001682867 0.03661223

SE multiplier = 0.0365/0.0317 = 1.15



Example 3 Random data Y ,X1,X2

True model: Y = X1 with ρx1,x2 = 0.9

## Estimate Std. Error
## X1 1.004437 0.03179358

## Estimate Std. Error
## X2 0.9027353 0.03187386

## Estimate Std. Error
## X1 1.010369666 0.07246802
## X2 -0.006612264 0.07258049

SE multiplier = 0.0725/0.0318 = 2.28



Example 4 Random Data Y ,X1,X2

True model: Y = X1/2 + X2/2 with ρx1,x2 = 0

## Estimate Std. Error
## X1 0.5016772 0.03169791

## Estimate Std. Error
## X2 0.4962426 0.03181129

## Estimate Std. Error
## X1 0.5052747 0.03165973
## X2 0.4999045 0.03177184



Example 5 Random data Y ,X1,X2

True model: Y = X1/2 + X2/2 with ρx1,x2 = 0.5

## Estimate Std. Error
## X1 0.7516066 0.03175274

## Estimate Std. Error
## X2 0.749294 0.03185154

## Estimate Std. Error
## X1 0.5059117 0.03649992
## X2 0.4983171 0.03661223



Example 6 Random Data Y ,X1,X2

True model: Y = X1/2 + X2/2 with ρx1,x2 = 0.9

## Estimate Std. Error
## X1 0.9530507 0.03180093

## Estimate Std. Error
## X2 0.9527279 0.03185082

## Estimate Std. Error
## X1 0.5103697 0.07246802
## X2 0.4933877 0.07258049



Dealing with multicollinearity

Possible solutions:

I remove highly correlated predictors
I linearly combine predictors (add them together)
I do nothing if the p-values aren’t important
I standardize the predictors (subtract the mean)

If you can live with less precise coefficient estimates, or a model
that has a high R-squared but few significant predictors, doing
nothing can be the correct decision because it won’t impact the fit



What makes a regession linear?

Linear regression refers to the coefficients in the model. It has
nothing to do with the way X is included in the model or the
relationship between X and Y . It is the form of β:

Linear regression models:

µy = β0 + β1X + β2X 2

µy = β0 + β1X1 + β2X2 + β3X1X2 + β4X 2
1 + β5X 2

2

Not a linear regression model because of β2
1 :

µy = β0 + β1X1 + β2
1X2



This is a (linear) Regression
µy = 2 + x/2 + x2/5
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The observed versus the model fit
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Regression with k predictors

Like the two predictor case, we can compute all the parameter
estimates easily using matrix algebra. The model includes more
terms but otherwise the issues are similar to the two predictor case.

We need to look at the correlation matrix of all the predictors to
determine if colinearity is a problem. While a predictor may not be
highly correlated to any one other predictor, it may be highly
correlated with a set of other predictors.

If more than two predictors are included in the model then the VIF
is unique for each predictor and is computed by regressing each
predictor on the other predictors in the model and looking at the
coefficient of determination



ANOVA as a regression model (categorical predictors)
In order to fit an ANOVA model as a regression model, the p level
factor variable is converted into p − 1 indicator variables

Example: The 3 level cylinder predictor is converted into 2 indicator
variables, one for 6 cylinders and one for 8 cylinders

## mpg cyl
## Mazda RX4 21.0 6
## Mazda RX4 Wag 21.0 6
## Datsun 710 22.8 4
## Hornet 4 Drive 21.4 6
## Hornet Sportabout 18.7 8

## mpg cyl6 cyl8
## Mazda RX4 21.0 1 0
## Mazda RX4 Wag 21.0 1 0
## Datsun 710 22.8 0 0
## Hornet 4 Drive 21.4 1 0
## Hornet Sportabout 18.7 0 1



Example
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## cyl N Mean SD
## 1 4 11 26.66 4.510
## 2 6 7 19.74 1.454
## 3 8 14 15.10 2.560

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 26.66 0.972 27.44 2.69e-22
## cyl6 -6.92 1.558 -4.44 1.19e-04
## cyl8 -11.56 1.299 -8.90 8.57e-10



What about the constant variance assumption?
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ANCOVA continuous and categorical predictor
This is the common names for a model that contains both
categorical and continuous predictors. We include categorical
predictors by converting them into indicator variables then proceed
with a multiple regression. Only difference is this time the model
also includes a continuous predictor X

Example: Treatment versus placebo with a covariate

µY = β0 + β1I(trt) + β2X

b0 = intercept for the placebo group
b1 = change in intercept from placebo to treatment
b2 = common slope for the covariate

This model fits parallel lines



µy = 5 + 5I(trt) + X
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Regression estimates

## Estimate Std. Error
## Placebo 4.826374 0.9359718
## TRT-PLB 1.179350 1.3236640

## Estimate Std. Error
## Intercept 7.0034277 0.41183350
## Slope 0.7787446 0.08507816

## Estimate Std. Error
## Placebo 5.1247779 0.2127760
## TRT-PLB 4.6019328 0.3271369
## Slope 0.9859269 0.0372547



Model with different slopes

The slopes of our continuous predictor need not be the same for
each level of our categorical predictor. We can model this with an
interaction term.

µY = β0 + β1I(trt) + β2X + β3XI(trt)

b0 = intercept for the placebo group

b1 = change in intercept from placebo to treatment

b2 = slope for the placebo group

b3 = change in slope from placebo to treatment

Lines are no longer parallel meaning the difference between the
groups changes with the value of X



µy = 5 + 5I(treat) + X + 1
2XI(treat)
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Regression estimates

## Estimate Std. Error
## Intercept 6.691252 0.36336549
## Slope 1.088475 0.07506545

## Estimate Std. Error
## Placebo 5.205411 0.26884259
## TRT-PLB 3.639710 0.41333761
## Slope 1.252337 0.04707134

## Estimate Std. Error
## Int(Placebo) 5.1452515 0.20744453
## Int(TRT-PLB) 4.3576134 0.34779714
## Slp(Placebo) 1.0535716 0.05305477
## Slp(TRT-PLB) 0.3730443 0.07268315



Sample Size and Power calculations

α (or Significance) is the chance of accepting what is false. It does
not depend on n, the sample size, but is chosen. Want it to be
small and is commonly set at 0.05.

1− β (or Power) is the chance of accepting what is true. It depends
on n and increases as n increases. To calculate Power, you need to
specify each parameter in the model (based on previous studies,
educated guesses or some other source). The more complicated the
model the more parameters you need to specify.

Java Applets to calculate sample size and power
http://homepage.stat.uiowa.edu/~rlenth/Power/

G*Power for Mac or Windows
http://www.gpower.hhu.de/en.html

http://homepage.stat.uiowa.edu/~rlenth/Power/
http://www.gpower.hhu.de/en.html


Questions?

Department of Statistics at UBC:

www.stat.ubc.ca/how-can-you-get-help-your-data

SOS Program - An hour of free consulting to UBC graduate
students. Funded by the Provost and VP Research Office.

STAT 551 - Stat grad students taking this course offer free
statistical advice. Fall semester every academic year.

Short Term Consulting Service - Advice from Stat grad students.
Fee-for-service on small projects (less than 15 hours).

Hourly Projects - ASDa professional staff. Fee-for-service consulting.


