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Resources for statistical assistance

Department of Statistics at UBC:

www.stat.ubc.ca/how-can-you-get-help-your-data

SOS Program - An hour of free consulting to UBC graduate
students. Funded by the Provost and VP Research Office.

STAT 551 - Stat grad students taking this course offer free
statistical advice. Fall semester every academic year.

Short Term Consulting Service - Advice from Stat grad students.
Fee-for-service on small projects (less than 15 hours).

Hourly Projects - ASDa professional staff. Fee-for-service consulting.



Outline

Analysis of Count Data

Binary Data Analysis

Categorical Data Analysis

Generalized Linear Models

Types of Data

Continuous data: any value in a specified range is possible

◮ Normal distribution: entire real line
◮ Regression and ANOVA models

Count data: non-negative integer valued

◮ Poisson distribution
◮ Negative Binomial distribution

Categorical data: non numeric

◮ ordinal or nominal (binary is a special case)



Poisson Distribution

Number of events occuring at anytime in a fixed amount time or
anywhere in a fixed amount of space (or some other index of size)

The rate at which events occur is constant

Occurrence of one event does not affect the probability that a
second event will occur

Examples

May follow a Poisson Distribution:

◮ number of phone calls received by a call center per hour
◮ decay events per second from a radioactive source

May violate the Poisson assumptions:

◮ number of students who arrive at the student union building
per minute, rate not constant (low during class time, high
between class time)

◮ number of magnitude 5 earthquakes per year in California,
events not independent (one large earthquake increases the
probability of aftershocks)



Poisson Distribution (continued)
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Mean and variance both equal the rate (expected number of events)

The larger the rate the larger the spread in the data (a strong
assumption)

If the rate is ≥ 20 then Poisson ∼ Normal

Number of colon polyps in 12 months

## number treat age

## 63 placebo 20

## 2 drug 16

## 28 placebo 18

## 17 drug 22

## 61 placebo 13

## 1 drug 23

## 7 placebo 34

## 15 placebo 50

## 44 placebo 19

## 25 drug 17

Estimated rate (mean number of polyps in 12 months) = 24.05

Can the normal distribution be used to describe this count data?



Number of colon polyps at 12 months
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Mean = 24.05, Variance = 434.68 (Std. Dev = 20.85)

95% confidence interval for the estimated rate

If the rate is ≥ 20 then we can use a normal approximation:

Estimate the rate with x̄ =
∑n

1 xi/n

Then a 95% CI is given by x̄ ± 1.96
√

x̄/n

If the rate is < 20 then the normal approximation may not be very
good and a more exact method should be used



Comparing 2 Poisson rates
If the rate in each group is ≥ 20 then we do the following:

x̄ =
∑n

1 xi/n ȳ =
∑m

1 yj/m z̄ =

∑n

1
xi +

∑m

1
yj

n+m

Then under the null hypothesis

x̄−ȳ
√

z̄
/
√

1

n
+ 1

m
∼ N(0, 1)

sample size total rate

drug 9 89 9.89
placebo 11 392 35.64

20 481 24.05

Statistic = -11.68
p-value = 1.57e-31

There are exact methods to compare the rate ratio of 2 groups

Poisson Regression

Model the log of the rate (mean) as a function of other variables
log(µ) = α + β1x1 + β2x2 + ...

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 2.291 0.1060 21.62 1.225e-103

## treatplacebo 1.282 0.1174 10.92 9.446e-28

log(drug rate) = 2.291
drug rate = e2.291 = 9.9
log(placebo rate) = 2.291 + 1.282
placebo rate = e2.291+1.282 = 35.6
P/D relative risk = 35.6/9.9 = 3.60

P/D relative risk = e2.291+1.282/e2.291 = e1.282

log(P/D relative risk) = 1.282



Adjust for covariate (age)

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.1699 0.16821 18.85 3.22e-79

## treatplacebo 1.3591 0.11764 11.55 7.16e-31

## age -0.0388 0.00596 -6.52 7.02e-11

For a fixed age:
log(P/D relative risk) = 1.359
P/D relative risk = e1.359 = 3.89

For a fixed treatment:
log(relative risk for one year increase in age) = -0.0388
Relative risk for one year increase in age = e−0.0388 = 0.96
Relative risk for 20 year increase in age = e(−0.0388x20) = 0.46

If the Poisson assumption (σ2 = µ) is violated, the model can
dramatically overstate the significance of the predictors.

Rate by age
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At age=20:
placebo rate = e3.170+1.359−(0.0388x20) = 42.65
drug rate = e3.170−(0.0388x20) = 10.96
P/D relative risk = 42.65/10.96 = 3.89

At age=40:
placebo rate = e3.170+1.359−(0.0388x40) = 19.63
drug rate = e3.170−(0.0388x40) = 5.04
P/D relative risk = 19.63/5.04 = 3.89



Negative Binomial Distribution (NB)

When your data show extra variation that is greater than the mean
(overdispersion)

Has one parameter more than the Poisson distribution that adjusts
the variance independently from the mean

σ2 = µ + µ2/r

Approaches the Poisson for large r, but has larger variance than the
Poisson for small r

Negative Binomial (continued)
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NB: size = 125

NB: size = 25

NB: size = 5

NB: size = 2

NB: size = 1

All of the above have a rate of 20. Note the high variation in the
shapes of the curves.

Another parametrization typically used in Negative Binomial
Regression:
σ2 = τ2µ, where τ2 is an overdispersion parameter
If τ = 1, we have a Poisson



Estimating the Rate and 95% CI for NB data

Most count data we encounter in practice has σ2 > µ

Compute the sample mean and variance:
x̄ =

∑n
1 xi/n s2 =

∑n
1(xi − x̄)2/(n − 1)

We use the normal approximation for the 95% CI
x̄ ± 1.96s/

√
n

This approximation may not be very good

τ2 = σ2/µ is an estimate of the overdispersion
r = µ2/(σ2 − µ) is an estimate of the size parameter

Negative Binomial Regression

Like Poisson regression, the log of the rate (or mean) is modelled as
a function of other variables

Poisson regression can include an overdispersion parameter. This is
similar but not identical to negative binomial regression.

Negative Binomial regression will estimate either a single value for r

or τ in addition to the rate. This allows σ2 to be greater than the
rate.



Number of colon polyps at 12 months

Overdispersed Poisson model:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.1699 0.5510 5.75 2.34e-05

## treatplacebo 1.3591 0.3853 3.53 2.59e-03

## age -0.0388 0.0195 -1.99 6.28e-02

## RR (P/D) 2.5 % 97.5 %

## 3.893 1.829 8.284

## Overdispersion (tau) = 10.56

Number of colon polyps at 12 months

Negative Binomial model:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.1579 0.558 5.66 1.48e-08

## treatplacebo 1.3681 0.369 3.71 2.09e-04

## age -0.0386 0.021 -1.84 6.58e-02

## RR (P/D) 2.5 % 97.5 %

## 3.928 1.906 8.096

## r = 1.719



Absenteeism from School in Rural New South Wales

Absenteeism: Frequency by Days
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## Eth N Mean Var V/M r

## 1 (N)ot Aboriginal 77 12.18 183.89 15.10 0.86

## 2 (A)boriginal 69 21.23 313.95 14.79 1.54

Negative Binomial model

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 2.4999 0.1109 22.551 1.309e-112

## EthA 0.5556 0.1597 3.479 5.027e-04

## RR (A/N) 2.5 % 97.5 %

## 1.743 1.275 2.383

## r = 1.157

log(A/N relative rate) = 0.5556
A/N relative rate = e0.5556 = 1.743



Overdispersed Poisson model

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.4999 0.1262 19.803 6.066e-43

## EthA 0.5556 0.1617 3.436 7.716e-04

## RR (A/N) 2.5 % 97.5 %

## 1.743 1.270 2.393

## Overdispersion (tau) = 13.14

Overdispersion

Common in the modeling of counts

Not an issue in ordinary regression because the normal distribution
has a separate variance parameter (not a function of the mean) to
describe the variability

Does not address inadequacy due to an important term missing in
the model

Example: Number of deaths due to vehicle accidents in a week. A
Poisson model would assume each person has the same probability
of dying. Factors such as amount of time spent driving, whether a
person wears a seat belt and geographical location can cause fatality
counts to display more variation than predicted by the Poisson model



Overview

We are interested in modelling the rate (count for fixed amount of
time or space)

Main distributions are Poisson and Negative Binomial

When making comparisons we usually talk about the relative rate.
For adverse events this is usually referred to as the relative risk.

If data are observed over varying time periods then we need to
standardize the counts to make them comparable. Any analysis
must adjust for these varying times.

Common to account for overdispersion. If it exists and isn’t taken
into account, this doesn’t affect the model estimates but
underestimates their standard errors.

Categorical Data

Two main types: Nominal and Ordinal

Nominal data is differentiated by label but otherwise there is no
logical order (Gender, Ethnicity, Species)

Ordinal data is differentiated by a label that allows a logical order
but the magnitude of the difference cannot be established (Likert
Scales)

Binary data can be either ordinal or nominal. With only two
possible outcomes, it is very easy to deal with. We can code the
two outcomes as 0 or 1 but this is only an indicator that an
outcome has occurred not an indication of order or a real number.



Binary Data 1/0 (special case of categorical data)

Binary data need not be coded as 1/0. It can be be coded as any
binary indicator such as True/False, Success/Failure, etc.

We are interested with estimating the probability of each outcome.
Although knowing one completely defines the other:
P(X = 1) = p P(X = 0) = 1 − p

Another parameter of interest is the odds (S/F) = p/(1 − p)

Or log odds (called the logit function):
η = logit(p) = log( p

1−p
) = log(p) − log(1 − p)

PROBABILITY AND ODDS ARE NOT THE SAME
Suppose probability of success = 0.9
Odds S/F = 0.9/0.1 = 9
Odds F/S = 0.1/0.9 = 0.11

Binomial Distribution

Number of events (successes) for a fixed number of binary
outcomes, n

A Binary outcome, xi is 0 or 1 and X =
∑

x is the number of times
our sample gave us a value of 1

X ∼ Binomial(n, p)
Expected value of X = np

Variance of X = np(1 − p)

X can take any integer value between 0 and n

Can calculate the probability for any value of X



Example

Approximately 4.0% of Canadian adults were vegetarians as of 2003.
A 2015 survey conducted by the Vancouver Humane Society and
administered by polling company Environics “shows that 33 percent
of Canadians, are either already vegetarian or are eating less meat.”

A random sample of n = 25 students is selected from the GPS
workshops. What is the distribution for the number who are
vegetarian (or are eating less meat)?
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p = 0.04

p = 0.33

Assuming p = 0.04:
mean = 25 x 0.04 = 1
sd = sqrt(25 x 0.04 x 0.96) = 0.98

Assuming p = 0.33:
mean = 25 x 0.33 = 8.25
sd = sqrt(25 x 0.33 x 0.67) = 2.35

Normal approximation good if np and n(1-p) > 5



Estimating p or logit(p)

Usually we are not interested in the number of successes but the
probability or odds of a success

If we have n observations where n1 are successes and n0 are failures
then we estimate the probability of a success by p̂:

p̂ = x̄ = n1/n sep̂ =
√

p̂(1−p̂)
n

If we wish to estimate the log odds then:
η̂ = logit(p̂) = log(n1/n0) = log(n1) − log(n0)
seη̂ =

√

1/n1 + 1/n0

Testing the value of p

To test a specific value of p or η = logit(p) we use a Wald test

Estimate the parameter from the data then plug the hypothesized
value into the following:
z1 = (p̂ − p)/sep̂ z2 = (η̂ − η)/seη̂

If n1 ≥ 5 and n0 ≥ 5 both z1 and z2 are approximately N(0, 1)

If the sample size is too small then exact methods based on
binomial distributions are needed



Comparing a binary response between 2 groups

Create a 2x2 table of the data

Group 1 Group 2 Total

False n11 n12 n1+

True n21 n22 n2+

n+1 n+2 n++

The 4 numbers in the table are all that is needed

Example: UC Berkeley admissions by gender
Is there gender bias in admission practices at Berkeley?

Male Female Total

Admitted 1198 557 1755

Rejected 1493 1278 2771

2691 1835 4526

Male Female Total

Admitted 0.45 0.30 0.39

Rejected 0.55 0.70 0.61

0.59 0.41 1.00



Expected outcomes if hypothesis is true that there is no gender bias

Male Female Total

Admitted 0.39 0.39 0.39

Rejected 0.61 0.61 0.61

0.59 0.41 1.00

Male Female Total

Admitted 1043 712 1755

Rejected 1648 1123 2771

2691 1835 4526

Compare observed to expected

Pearson χ2 test, uses a statistic that follows a χ2 distribution
approximately:

(1198 − 1043)2/1043 + (1493 − 1648)2/1648 + (557 − 712)2/712 +
(1278 − 1123)2/1123 = 92.7

degrees of freedom = (#Columns - 1) x (#Rows - 1) = 1

p-value = 0



χ
2 distribution

Methods for comparing the numbers

Pearson χ
2 test

◮ should apply a continuity correction
◮ requires expected counts ≥ 5

Fisher’s exact test

◮ Method is available in most software
◮ valid no matter what the counts in each cell are

z test for the log odds ratio

◮ good for estimating the size of the effect



Odds Ratio

## Gender

## Admit Male Female

## Admitted 1198 557

## Rejected 1493 1278

Odds of being admitted for Males = 1198/1493 = 0.8024
Odds of being admitted for Females = 557/1278 = 0.4358
M/F odds ratio (OR) of being admitted = 0.8024/0.4358 = 1.8412

The log of the odds ratio is approximately normally distributed:
Log OR = log(1.8412) = 0.6104
SE =

√

1/1198 + 1/1278 + 1/1493 + 1/557 = 0.06389

p-value = 1.25e-21

Example: UC Berkeley admissions by 6 largest departments

Do admission rates differ by department?

## Admitted Rejected %Admitted

## Dept

## A 601 332 64

## B 370 215 63

## C 322 596 35

## D 269 523 34

## E 147 437 25

## F 46 668 6

## Chisq = 778.9065 DF = 5 Pval = 0.0000

Overall %Admitted = 39

We can calculate individual odds ratios
There are 15 pairwise odds ratios to consider



Logistic Regression

Analyze the simultaneous effects of multiple variables, including
mixtures of categorical and continuous variables and interaction
terms

Odds of the response taking a particular value is modeled:

logit(p) = α + β1x1 + β2x2 + ...

logit(p) = log(p/(1-p)) = log(odds)

The estimated effects in the model are log odds ratio for a unit
change in the predictor

Example: Student Admissions at UC Berkeley

## Admitted Rejected %Admitted

## Dept Gender

## A Male 512 313 62

## Female 89 19 82

## B Male 353 207 63

## Female 17 8 68

## C Male 120 205 37

## Female 202 391 34

## D Male 138 279 33

## Female 131 244 35

## E Male 53 138 28

## Female 94 299 24

## F Male 22 351 6

## Female 24 317 7

## Sum Male 1198 1493 45

## Female 557 1278 30



Analysis by Gender only

## Analysis of Deviance Table (Type II tests)

##

## Response: cbind(Admit, Reject)

## LR Chisq Df Pr(>Chisq)

## Gender 93.45 1 <2e-16

## OR (M/F) 2.5 % 97.5 %

## 1.84 1.62 2.09

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.8305 0.05077 -16.357 3.868e-60

## GenderM 0.6104 0.06389 9.553 1.263e-21

There appears to be a gender bias

## Estimate Std. Error

## (Intercept) -0.8305 0.05077

## GenderM 0.6104 0.06389

For male: log(odds) = -0.8305 + 0.6104
odds = e−0.8305+0.6104 = 0.802
p = odds/(1 + odds) = 0.802/1.802 = 0.445

For female:
log(odds) = -0.8305
odds = e−0.8305 = 0.436
p = odds/(1 + odds) = 0.436/1.436 = 0.304

M/F odds ratio = 0.802/0.436 = 1.84
M/F odds ratio = e−0.8305+0.6104/e−0.8305 = e0.6104

log(M/F odds ratio) = 0.6104



Analysis by Gender and Department

## Analysis of Deviance Table (Type II tests)

##

## Response: cbind(Admit, Reject)

## LR Chisq Df Pr(>Chisq)

## Gender 1.5 1 0.216

## Dept 763.4 5 <2e-16

## OR (M/F) 2.5 % 97.5 %

## 0.90 0.77 1.06

There does not appear to be a gender bias

## Estimate Std. Error

## (Intercept) 0.68192 0.09911

## GenderM -0.09987 0.08085

## DeptB -0.04340 0.10984

## DeptC -1.26260 0.10663

## DeptD -1.29461 0.10582

## DeptE -1.73931 0.12611

## DeptF -3.30648 0.16998

For male:
odds = e0.68192−0.09987 = 1.790
p = 1.790/2.790 = 0.642

For female:
odds = e0.68192 = 1.978
p = 1.978/2.978 = 0.664

M/F odds ratio = e−0.09987 = 0.90



Analysis of Gender within Department

## Analysis of Deviance Table (Type II tests)

##

## Response: cbind(Admit, Reject)

## LR Chisq Df Pr(>Chisq)

## Gender 1.5 1 0.21593

## Dept 763.4 5 < 2e-16

## Gender:Dept 20.2 5 0.00114

## OR (M/F) 2.5 % 97.5 %

## DeptA 0.35 0.21 0.58

## DeptB 0.80 0.34 1.89

## DeptC 1.13 0.85 1.50

## DeptD 0.92 0.69 1.24

## DeptE 1.22 0.83 1.81

## DeptF 0.83 0.46 1.51

## Estimate Std. Error

## (Intercept) 1.5442 0.2527

## GenderM -1.0521 0.2627

## DeptB -0.7904 0.4977

## DeptC -2.2046 0.2672

## DeptD -2.1662 0.2750

## DeptE -2.7013 0.2790

## DeptF -4.1250 0.3297

## GenderM:DeptB 0.8321 0.5104

## GenderM:DeptC 1.1770 0.2996

## GenderM:DeptD 0.9701 0.3026

## GenderM:DeptE 1.2523 0.3303

## GenderM:DeptF 0.8632 0.4027

DeptA OR (M/F):
e1.5442−1.0521/e1.5442 = e−1.0521 = 0.35

DeptB OR (M/F):
e1.5442−1.0521−0.7904+0.8321/e1.5442−0.7904 = e−1.0521+0.8321 = 0.80



Categorical variables with more than 2 levels

If our response has more than 2 levels then the models are more
complicated

If we have a single categorical predictor we can do Pearson’s χ2 test
or Fisher’s exact test if some counts in the cross tabulation are small

## Wine Rating

## Temperature 1 2 3 4 5

## cold 5 16 13 2 0

## warm 0 6 13 10 7

## Fisher's Exact test p-value = 7.366514e-05

Cumulative Logistic Regression Models
Can handle a response variable with k multiple categories as well as
account for the ordering

The model indicates how each predictor variable uniquely affects the
odds of being in category 2 or higher compared to category 1; being
in category 3 or higher compared to being in category 2 or 1; . . . up
to being in category k compared to being in categories 1, 2, . . . ,
k-1

Assumes that the relationship of predictors to the odds of a response
being in the next higher order category is the same regardless of
which categories you’re comparing (proportional odds assumption)

Each comparison has its own intercept, but the same set of
regression coefficient estimates

With nominal data no assumptions are made about structure so a
more general model is fit



Copenhagen Housing Conditions Survey

Variables are

◮ Sat - Satisfaction with their present housing circumstances
(Low, Medium, High)

◮ Infl - Perceived influence on the management of the property
(Low, Medium, High)

◮ Type - (Tower, Atrium, Apartment, Terrace)

Satisfaction is the response (ordinal)

Predict Satisfaction by Influence and Type

The data

## Sat Low Medium High

## Infl Type

## Low Tower 21 21 28

## Apartment 61 23 17

## Atrium 13 9 10

## Terrace 18 6 7

## Medium Tower 34 22 36

## Apartment 43 35 40

## Atrium 8 8 12

## Terrace 15 13 13

## High Tower 10 11 36

## Apartment 26 18 54

## Atrium 6 7 9

## Terrace 7 5 11



Proportional odds logistic regession model

## Threshold Parameters for baseline

## Low|Medium Medium|High

## -0.3959673 0.6892151

## Shift parameters for predictors

## Estimate Std. Error Pr(>|z|)

## InflMedium 0.4901320 0.1655909 0.0031

## InflHigh 1.1934906 0.1865318 0.0000

## TypeApartment -0.5277651 0.1667091 0.0015

## TypeAtrium -0.2377054 0.2421692 0.3263

## TypeTerrace -0.5632012 0.2316138 0.0150

Predicted probabilities for proportional odds model

## Sat Low Medium High

## Infl Type

## Low Tower 40.2 26.4 33.4

## Apartment 53.3 23.9 22.8

## Atrium 46.1 25.6 28.4

## Terrace 54.2 23.6 22.2

## Medium Tower 29.2 25.8 45.0

## Apartment 41.1 26.3 32.6

## Atrium 34.3 26.4 39.3

## Terrace 42.0 26.2 31.8

## High Tower 16.9 20.7 62.3

## Apartment 25.7 24.9 49.4

## Atrium 20.6 22.8 56.6

## Terrace 26.4 25.1 48.5



Nominal logistic regression model

## All are threshold parameters

## Est PVal

## Low|Medium.(Intercept) -0.3967147 0.0299

## Medium|High.(Intercept) 0.7000645 0.0001

## Low|Medium.InflMedium -0.5188023 0.0044

## Medium|High.InflMedium -0.4707628 0.0160

## Low|Medium.InflHigh -1.0728042 0.0000

## Medium|High.InflHigh -1.2567069 0.0000

## Low|Medium.TypeApartment 0.5347458 0.0050

## Medium|High.TypeApartment 0.5172442 0.0051

## Low|Medium.TypeAtrium 0.1309072 0.6436

## Medium|High.TypeAtrium 0.3230569 0.2343

## Low|Medium.TypeTerrace 0.5538032 0.0327

## Medium|High.TypeTerrace 0.5696173 0.0305

Predicted probabilities for Nominal model

## Sat Low Medium High

## Infl Type

## Low Tower 40.2 26.6 33.2

## Apartment 53.4 23.7 22.8

## Atrium 43.4 30.2 26.4

## Terrace 53.9 24.1 21.9

## Medium Tower 28.6 27.1 44.3

## Apartment 40.6 27.2 32.2

## Atrium 31.3 32.1 36.5

## Terrace 41.1 27.9 31.0

## High Tower 18.7 17.7 63.6

## Apartment 28.2 20.8 51.0

## Atrium 20.8 23.4 55.8

## Terrace 28.6 21.7 49.7



Generalized Linear Models

All the models we have fit are generalized linear models

There is the link function which converts the mean into a linear
function of the model parameters

g(µ) = α + β1x1 + β2x2 + ...

Dist Link Variance Dist Link Variance

Normal µ σ2 Gamma 1/µ µ2

Poisson log(µ) µ NB log(µ) µ + µ2/r

Binomial logit(µ) µ(1 − µ) NB log(µ) τ2µ

Resources for statistical assistance

Department of Statistics at UBC:

www.stat.ubc.ca/how-can-you-get-help-your-data

SOS Program - An hour of free consulting to UBC graduate
students. Funded by the Provost and VP Research Office.

STAT 551 - Stat grad students taking this course offer free
statistical advice. Fall semester every academic year.

Short Term Consulting Service - Advice from Stat grad students.
Fee-for-service on small projects (less than 15 hours).

Hourly Projects - ASDa professional staff. Fee-for-service consulting.


