Douglas Andrew Bonn

Professor

Relevant Degree Programs

 

Graduate Student Supervision

Doctoral Student Supervision (Jan 2008 - May 2019)
Investigations in Flatland : scanning tunnelling microscopy measurements of noble metal surface states and magnetic atoms on magnesium oxide (2018)

At the atomic scale, surfaces exhibit a rich variety of physical phenomena that can be probed using a scanning tunnelling microscope (STM). The STM measures the quantum tunnelling of electrons between a metallic tip and conducting sample and can be used to characterize the nanoscale surface. This thesis presents STM measurements taken at low-temperature in ultra-high vacuum, which are used to characterize two different nanoscale environments: the two-dimensional surface states of Ag(111) and Cu(111) and the magnetic moments of iron and cobalt atoms deposited on a thin-film of magnesium oxide.Fourier-transform scanning tunnelling spectroscopy (FT-STS) analysis of quasiparticle interference, created by impurity scattering on the surfaces of the noble metals Ag(111) and Cu(111), is used to compare the most common modes of acquiring FT-STS data and shows, through both experiment and simulations, that artifact features can arise that depend on how the STM tip height is stabilized throughout the course of the measurement. Such artifact features are similar to those arising from physical processes in the sample and are susceptible to misinterpretation in the analysis of FT-STS in a wide range of important materials. A prescription for characterizing and avoiding these artifacts is proposed, which details how to check for artifacts using measurement acquisition modes that do not depend on tip height as a function of lateral position and careful selection of the tunnelling energy.In a separate set of experiments a spin resonance technique is coupled to an STM to probe the spin states of individual iron atoms on a magnesium oxide bilayer. The magnetic interaction between the iron atoms and surrounding spin centres shows an inverse-cubic distance dependence at distances greater than one nanometre. This distance-dependence demonstrates that the spins are coupled via a magnetic dipole-dipole interaction. By characterizing this interaction and combining it with atomic manipulation techniques a new form of nanoscale magnetometry is invented. This nanoscale magnetometer can be combined with trilateration to probe the spin structure of individual atoms and nanoscale structures. The information gained characterizing these new forms of magnetic sensing sets the stage for the study of complex magnetic systems like molecular magnets.

View record

Structured quantitative inquiry labs : developing critical thinking in the introductory physics laboratory (2015)

Many undergraduate labs engage students in experimentation without developing critical thinking or scientific reasoning skills, especially about measurement and data. In this thesis, I present a pedagogical framework for developing students' critical thinking behaviours in a first-year undergraduate physics lab. The main critical thinking behaviours assessed were for students to reflect on their data collection and analyses, iterate to improve their measurements and methods, and evaluate the experiments and theoretical models. The pedagogy uses structured comparisons between measurements and models, with a critical focus on understanding measurement and uncertainty at a conceptual level and applying the concepts to quantitative analysis of data. Implementation involved scaffolded instructions and support for reflection and iteration that was dynamically faded throughout the course. Through analysis of students' written lab materials, I evaluated their engagement in reflection, iteration, and evaluation, comparing to a previous iteration of the course that did not include the critical thinking scaffolding. Students in the new course structure not only transferred the previously scaffolded reflection and iteration behaviours to unscaffolded experiments, but also spontaneously evaluated theoretical models, which was never explicitly structured. While the previous version of the course supported students in data analysis at a procedural, 'plug-and-chug' level, the new course structure significantly improved students' critical thinking behaviours, shifted students into more expert-like epistemological frames, and improved their motivation and attitudes about experimental physics.

View record

Scanning tunneling microscopy study of superconducting pairing symmetry : application to LiFeAs (2014)

Identifying the pairing symmetry is a crucial step towards uncovering the superconducting mechanism. The pairing symmetry and interactions leading to pairing in the iron-based high-temperature superconductors are under debate. In this thesis work, the pairing symmetry of LiFeAs, a stoichiometric superconductor in the iron-based family, is studied by scanning tunneling microscopy. The tunneling conductance spectrum in a defect-free region shows two nodeless superconducting gaps. In addition, a dip-hump above-gap structure was observed, indicating coupling between the superconducting carriers and bosonic modes. Defect bound states were measured for iron-site defects. The bound states are pinned to the gap edge of the small superconducting gap, consistent with theoretical predictions for a sign-changing pairing symmetry. Finally, the observed Bogoliubov quasiparticle interference associated with scattering from defects provides compelling evidence for an s+- pairing symmetry in LiFeAs.

View record

Shubnikov-de Haas measurements and the spin magnetic moment of YBa₂Cu₃O₆.₅₉ (2012)

High-temperature superconductivity (high-Tc) was discovered in 1986 in copper-oxide materials, and since that time the goal of understanding high-Tc has driven the advancement of theoretical and experimental condensed matter physics. Despite the concerted efforts of some of the brightest minds in physics over the past 26 years, there is still no microscopic understanding of these materials. One of the main problems is an uncertainty as to whether Fermi liquid theory, which has been the foundation of our understanding of conventional metals for over 50 years, can be used to describe the strange pseudo-metallic properties of the cuprates. This thesis studies the resistivity of the high-Tc superconductor YBa₂Cu₃O₆+x (YBCO) in magnetic fields up to 70 Tesla. These resistivity measurements show oscillatory behaviour as a function of magnetic field, which is a clear signature of a Fermi surface. The development of an advanced technique (based on a genetic algorithm) for analyzing the oscillatory resistance is presented, and the Fermi surface of YBa₂Cu₃O₆.₅₉ is determined with great precision by analyzing the field, angle, and temperature dependences of the oscillations. Analysis of the data shows that the electronic g factor, related to the strength of quasiparticle spin magnetic moment, does not experience strong renormalization in YBCO, in contrast with previous experimental studies. This lack of renormalization has important implications for theoretical descriptions of YBCO. A full description of the shape of the Fermi surface of YBCO is presented, and measurements of YBCO with different oxygen concentrations give the evolution of the Fermi surface with hole doping. A novel technique for fine-tuning the hole doping in YBCO is presented in the context of a Hall coefficient experiment. The result is a detailed doping dependence of the Hall coefficient, indicating that the Fermi surface seen in quantum oscillation experiments is influenced by some type of electronic order---such as charge and spin stripe order---competing with superconductivity near 1/8th hole doping. The behaviour of the superconducting vortex lattice in a magnetic field is analyzed as a function of temperature, and this behaviour also indicates that something is competing with superconductivity near 1/8th doping.

View record

Why be normal? : single crystal growth and X-ray spectroscopy reveal the startlingly unremarkable electronic structure of Tl-2201 (2008)

High-quality platelet single crystals of Tl₂Ba₂CuO₆±δ (Tl-2201) have been grown using a novel time-varying encapsulation scheme, minimizing the thallium oxide loss that has plagued other attempts and reducing cation substitution. This encapsulation scheme allows the melt to be decanted from the crystals, a step previously impossible, and the remaining cation substitution is homogenized via a high-temperature anneal. Oxygen annealing schemes were developed to produce sharp superconducting transitions from 5 to 85 K without damaging the crystals. The crystals' high homogeneity and high degree of crystalline perfection are further evidenced by narrow rocking curves; the crystals are comparable to YSZ-grown YBa₂Cu₃O₆₊δ by both metrics.Electron probe microanalysis (EPMA) ascertained the crystals' composition to be Tl₁.₉₂₀₍₂₎Ba₁.₉₆₍₂₎Cu₁.₀₈₀₍₂₎O₆₊δ; X-ray diffraction found the composition of a Tc = 75 K crystal to be Tl₁.₉₁₄₍₁₄₎Ba₂Cu₁.₀₈₆₍₁₄₎O₆.₀₇₍₅₎, in excellent agreement.X-ray refinement of the crystal structure found the crystals orthorhombic at most dopings, and their structure to be in general agreement with previous powder data. Cation-substituted Tl-2201 can be orthorhombic, orthorhombic crystals can be prepared, and these superconduct, all new results. X-ray diffraction also found evidence of an as yet unidentified commensurate superlattice modulation.The Tl-2201 crystals' electronic structure were studied by X-ray absorption and emission spectroscopies (XAS/XES). The Zhang-Rice singlet band gains less intensity on overdoping than expected, suggesting a breakdown of the Zhang-Rice singlet approximation, and one thallium oxide band does not disperse as expected. The spectra correspond very closely with LDA band structure calculations, and do not exhibit the upper Hubbard bands arising from strong correlations seen in other cuprates. The spectra are noteworthy for their unprecedented (in the high-Tc cuprates) simplicity.The startling degree to which the electronic structure can be explained bodes well for future research in the cuprates. The overdoped cuprates, and Tl-2201 in particular, may offer a unique opportunity for understanding in an otherwise highly confusing family of materials.

View record

Master's Student Supervision (2010 - 2018)
A dilution refrigerator based scanning tunneling microscope for high resolution nanoscale spectroscopy (2016)

This thesis describes the design, construction and fabrication of a complete ultra-high vacuum (UHV) Dilution refrigerator based scanning tunneling microscope (STM). Data taken at a base temperature of 114 mK is presented and electrical, mechanical and vacuum design features are described for both the STM and the UHV system. Topographic images and spectroscopy on Au(111), graphene and other materials are presented to detail the performance of the STM. Techniques involving coherence and finite element analysis are used to address acousto-mechanical interaction between the STM and an acoustic room mode. The design and fabrication of an electron beam heater sample plate and complete UHV sputtering and annealing stage are presented.

View record

Microwave studies on FeSe superconductors (2016)

In this thesis, the microwave electrodynamic properties of stoichiometric FeSe are measured by a cavity perturbation technique based on a 940 MHz loop-gap resonator. Measurements surprisingly show, for the first time, that c-axis conductivity in stoichiometric FeSe superconductors exhibits a broad peak in its temperature-dependence, a phenomenon which was only observed for in-plane electrodynamics in the cuprates. This result implies that the charge transfer between FeSe-planes is enhanced by the development of long transport quasiparticle lifetimes below Tc.

View record

An ultra-low-vibration facility for housing a dilution temperature scanning tunneling microscope (2015)

This thesis details the specification, design and characterization of an ultra-low vibration facility and aspects of the design and performance of an ultra-high-vacuum dilution temperature scanning tunneling microscope (STM) housed within this facility. The basic principles of vibration isolation and STM are introduced. Existing ultra-low-vibration facilities and dilution temperature scanning tunneling microscopy experiments are reviewed. A specification for the vibration isolation performance of the facility is developed based on a simple model of the vibrational mechanics of a STM head. The experimental techniques of accelerometery and microphony are introduced. A survey of the acoustic and vibrational conditions at the site of the facility prior to its construction leads into a detailed description of the facility design. This is followed by an experimental characterization of the facility performance. Acoustic transmission functions of double-walled acoustic isolation vaults are reported; the dominant ambient sounds inside these vaults are found to coincide substantially with the acoustic modes of the vaults. Massive pneumatically supported concrete inertia blocks are found to perform approximately as ideal 2nd order damped spring mass systems below 10-15 Hz. Above these frequencies, acoustic forces are found to cause additional motion of the pneumatically supported stages. It is found that these systems must be carefully adjusted and monitored to ensure low resonant frequencies are maintained. Inertia blocks optimized for flexural resonant frequencies above 200Hz are presented; these vibrations are found to be poorly damped and to degrade isolation performance at the flexural resonance frequencies. Experiments mounted on light-load pneumatic isolators on top of the inertia blocks are found to be very susceptible to acoustic forces and as a result exhibit non-ideal isolation behavior above approximately 7 Hz. The design of a rigid STM head for use in the ultra-high-vacuum dilution refrigerator experiment is detailed and an overview of the supporting experimental system is given. The results of preliminary commissioning of the microscope are given and poorly damped vibrations of the dilution refrigerator structure at ~20 Hz are found to be the dominant contribution to the noise in the tunneling current signal when the instrument is operated at dilution temperature.

View record

Microwave electrodynamics of the high-Tc superconductor Tl2Ba2CuO6+8 (2014)

No abstract available.

The invention support environment : using metacognitive scaffolding and interactive learning environments to improve learning from invention (2011)

Invention activities are discovery-learning activities that ask students to invent a solution to a problem before being taught the expert solution. The combination of invention activities and tell-and-practice methods has been shown to lead to better student learning and performance on transfer tasks, as compared to tell-and-practice methods alone. A computer-based interactive learning environment, called the Invention Support Environment (ISE), was built using Cognitive Tutor Authoring Tools to improve the in-class use of invention activities, and act as a research tool for studying the effects of the activities. The system was designed to support three levels of metacognitive scaffolding, using domain-general prompts. It also features a platform for creating new invention tasks within the system, requiring little to no programming experience. The ISE was used to evaluate how domain-general scaffolding of invention activities can best support acquisition of domain knowledge and scientific reasoning skills. Five invention activities in statistics and data-analysis domains were given to 134 undergraduate students in a physics lab course at the University of British Columbia. Students either received guidance in the form of faded metacognitive scaffolding or unguided inventions. It was found that faded metacognitive scaffolding did not improve learning of invention skills compared to unguided inventions. Faded metacognitive scaffolding was found to improve understanding of domain equations, as seen through higher performance on debugging items in a statistics diagnostic. Future experimental design and ISE improvements are discussed.

View record

 
 

If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.