Postdoctoral Fellow - Wearable Sensors for Detecting Cardiac Arrest

Term:  This is a 1-3 year, full time position.

Salary: $50,000 per year

Start Date: Negotiable

Location: Vancouver Coastal Health Research Institute, UBC School of Biomedical Engineering

Academic Supervisor Dr. Brian Grunau UBC Department of Emergency Medicine

Summary of the project

This project is an interdisciplinary effort led by Dr. Brian Grunau (UBC Department of Emergency Medicine), Dr. Calvin Kuo (UBC School of Biomedical Engineering) and Dr. Babak Shadgan (UBC School of Biomedical Engineering and Department of Orthopaedics). The project is also in partnership with Centre for Health Evaluation and Outcome Sciences (CHÉOS). This position will be funded in part by a Mitacs Accelerate Grant.

Sudden cardiac arrest is an under-appreciated health crisis in Canada.  Every year Emergency Medical Services (EMS) respond to an estimated 38,000 Canadians experiencing sudden cardiac arrest (SCA). However, even in the best systems, only 5%‒7% of SCA cases with an EMS response survive to return home.  When a citizen collapses from SCA, it must be recognized before anyone can call 911 or bystanders can start CPR. In more than 75% of all SCAs, no one is there to witness the event, so it may be minutes, hours or even days before the emergency is identified.   Technology could be harnessed to address these substantial losses to life due to private location cardiac arrests, which occur to approximately 28,000 Canadians per year.

This project aims to develop engineered sensor strategies to specifically detect Sudden Cardiac Arrest and automatically call 9-1-1 with GPS coordinates.  This will eliminate unwitnessed (initially unrecognized) events and will increase the chance of survival in the current treated but “unwitnessed” group from 4% to an estimated 17%.  As cases would not immediately be deemed futile due to prolonged periods until recognition, sensors could double the number of patients actually treated by paramedics. This could increase the number of cardiac arrest survivors nationally from 2100 to 5500 per year.

Required Qualifications and Experience

Candidates should have a Ph.D. in Biomedical Engineering, Electrical Engineering, or other related fields. Ideal candidates should have experience working with wearable or implantable sensors designed to measure health information and analyzing sensor data to predict health states. Qualified individuals will have the following experience and skills:

  1. Experience using machine learning, deep learning, or reinforcement learning to analyze sensor data.
  2. Experience validating wearable and implantable sensor technologies and algorithms.
  3. Ability to write structured code, basic scripting, run unit tests and debugging.
  4. Ability to effectively use statistical software at an intermediate or higher level.
  5. Ability to work effectively, independently and collaboratively in a team environment.
  6. Ability to interact productively and professionally with a wide range of internal and external collaborators.
  7. Strong organizational, time management, and project management skills.

Additional desired qualifications:

  1. Knowledgeable in HTML5, CSS3 and JavaScript and experience with traditional object-oriented languages (e.g., Java, .Net, Ruby, Python).
  2. Experience working with PPG signals and vital signs, in particular cardiac signals.
  3. Understanding body positioning sensors and GPS.
  4. Familiarity with sensor PCB design and firmware programming
  5. Experience managing studies deploying wearable and implantable sensors
  6. Background and engineering knowledge and experience of near Infrared Spectroscopy (NIRS).
  7. Background and knowledge in medical device design, manufacturing and certifications.

Research Plan

This position will implement the following research phases:

A. Identify the sensor detection parameters and functioning framework for what a sensor must possess; identify a list of important specifications required for sensor technology. Identify all potential usable commercially available or in-development sensors. With a short-list of potential sensors, perform a detailed assessment of whether these devices meet our specifications. With the research team, determine if these available sensors which can be modified for our study purposes.

B. Develop a biosensor that can effectively determine changes in vital signs, in particular cessation of cardiac pulsation and arterial circulation. This sensor may use hardware from an existing sensor (identified in phase A), previous hardware developed in UBC, or new hardware created within this project.  Develop or modify previously created analysis software to monitor and detect changes in vital signs using sensor data.

C. Test and modify sensor in clinical settings. Other members of the study team will facilitate access and approval to work within these settings. Manage a study where sensors are deployed in relevant clinical settings to assess performance. This will include identifying suitable clinical settings where we can potentially monitor vital sign and detect cessation of cardiac pulsation and circulation, but also evaluate the performance of sensors in normal activities to ensure robustness.

D. Integrate GPS and body positioning data into the biosensor to mark the position and location of the user.

E. Wireless transmission of real-time vital sign, body position and GPS to a cloud-based platform.
 

To Apply

To apply, please send your Cover Letter and CV by email to:

Uda Walker: uwalker@providencehealth.bc.ca

 

 
Reference Number

Please mention reference number GPS-54591 in all your correspondence about this Postdoctoral Fellow position.

This position will be supervised by
The position is affilated with / related to
 
 
 
 
 

Explore our wide range of course-based and research-based program options!